Plotting wave solution at specific time

2 views (last 30 days)
bml727
bml727 on 16 Apr 2020
Answered: Deepak on 13 Nov 2024
I solved an equation u(x,t) and need to plot the solution at t=0.3, but I am not sure how to do it. I saved the time iteration and found that t=0.3 occurs at tplot(6). Any help would be great!
clear;
clc;
%% Problem 2
xstep = 0.1;
tstep = 0.05;
xstep2 = xstep*xstep;
tstep2 = tstep*tstep;
alpha = 2;
alpha2 = alpha*alpha;
lambda2 = alpha2*tstep2/xstep2;
xdomain = [0 1];
tdomain = [0 1];
nx = round((xdomain(2)-xdomain(1))/xstep);
nt = round((tdomain(2)-tdomain(1))/tstep);
xt0 = zeros((nx+1),1); % initial condition
dxdt0 = zeros((nx+1),1); % initial derivative
xold = zeros((nx+1),1); % solution at timestep k
x2old = zeros((nx+1),1); % solution at timestep k-1
xnew = zeros((nx+1),1); % solution at timestep k+1
% initial condition
pi = acos(-1.0);
for i=1:nx+1
xi = (i-1)*xstep;
if(xi>=0 && xi<=1)
xt0(i) = sin(2*pi*xi);
dxdt0(i) = alpha*pi*sin(2*pi*xi);
xold(i) = xt0(i)+dxdt0(i)*tstep;
xold(i) = xold(i) - 4*pi*pi*sin(2*pi*xi)*tstep2*alpha2;
end
end
x2old = xt0;
close all
x=linspace(xdomain(1),xdomain(2),nx+1);
%t=linspace(tdomain(1),tdomain(2),nx+1);
analy= sin(2*pi.*x).*(sin(4*pi.*0.3+cos(4*pi.*0.3)));
h1=plot(x,analy);
hold on;
h2=plot(x,xt0,'linewidth',2);
hold on;
h3=plot(x,xnew);
legend('Analytical','Initial','Final')
xlabel('x [m]');
ylabel('Displacement [m]');
set(gca,'FontSize',16);
tplot=zeros(1,nt);
for k=1:nt
time = k*tstep;
tplot(k)=time;
%tplot(6)=0.3
for i=1:nx+1
% Use periodic boundary condition, u(nx+1)=u(1)
if(i==1)
xnew(i) = 2*(1-lambda2)*xold(i) + lambda2*(xold(i+1)+xold(nx+1)) - x2old(i);
elseif(i==nx+1)
xnew(i) = 2*(1-lambda2)*xold(i) + lambda2*(xold(1)+xold(i-1)) - x2old(i);
else
xnew(i) = 2*(1-lambda2)*xold(i) + lambda2*(xold(i+1)+xold(i-1)) - x2old(i);
end
end
x2old=xold;
xold = xnew;
% if(mod(k,2)==0)
% h3.YData = xnew;
% refreshdata(h3);
% pause(0.5);
% end
end

Answers (1)

Deepak
Deepak on 13 Nov 2024
Hi @bml727,
We can plot the solution at time step (t = 0.3) by updating the plot for the sixth iteration of the solution array.
We can update the plot when the loop reaches this specific time step, so that the xnew values are correctly displayed. This involves setting the YData of the plot to the solution at this iteration, ensuring “xnew” values are correctly displayed on graph and adding a title to indicate the time step.
Here is the updated MATLAB code with the required changes:
clear;
clc;
%% Problem 2
xstep = 0.1;
tstep = 0.05;
xstep2 = xstep*xstep;
tstep2 = tstep*tstep;
alpha = 2;
alpha2 = alpha*alpha;
lambda2 = alpha2*tstep2/xstep2;
xdomain = [0 1];
tdomain = [0 1];
nx = round((xdomain(2)-xdomain(1))/xstep);
nt = round((tdomain(2)-tdomain(1))/tstep);
xt0 = zeros((nx+1),1); % initial condition
dxdt0 = zeros((nx+1),1); % initial derivative
xold = zeros((nx+1),1); % solution at timestep k
x2old = zeros((nx+1),1); % solution at timestep k-1
xnew = zeros((nx+1),1); % solution at timestep k+1
% initial condition
pi = acos(-1.0);
for i=1:nx+1
xi = (i-1)*xstep;
if(xi>=0 && xi<=1)
xt0(i) = sin(2*pi*xi);
dxdt0(i) = alpha*pi*sin(2*pi*xi);
xold(i) = xt0(i)+dxdt0(i)*tstep;
xold(i) = xold(i) - 4*pi*pi*sin(2*pi*xi)*tstep2*alpha2;
end
end
x2old = xt0;
close all
x = linspace(xdomain(1), xdomain(2), nx+1);
analy = sin(2*pi.*x).*(sin(4*pi.*0.3) + cos(4*pi.*0.3));
h1 = plot(x, analy, 'DisplayName', 'Analytical');
hold on;
h2 = plot(x, xt0, 'linewidth', 2, 'DisplayName', 'Initial');
hold on;
h3 = plot(x, xnew, 'DisplayName', 'Final');
legend('show');
xlabel('x [m]');
ylabel('Displacement [m]');
set(gca, 'FontSize', 16);
tplot = zeros(1, nt);
for k = 1:nt
time = k * tstep;
tplot(k) = time;
for i = 1:nx+1
% Use periodic boundary condition, u(nx+1)=u(1)
if(i == 1)
xnew(i) = 2 * (1 - lambda2) * xold(i) + lambda2 * (xold(i+1) + xold(nx+1)) - x2old(i);
elseif(i == nx+1)
xnew(i) = 2 * (1 - lambda2) * xold(i) + lambda2 * (xold(1) + xold(i-1)) - x2old(i);
else
xnew(i) = 2 * (1 - lambda2) * xold(i) + lambda2 * (xold(i+1) + xold(i-1)) - x2old(i);
end
end
x2old = xold;
xold = xnew;
% Update plot at t = 0.3 (tplot(6))
if k == 6
h3.YData = xnew;
title('Solution at t = 0.3');
break; % Exit the loop after updating the plot for t = 0.3
end
end
Attached is the documentation of functions referenced:
I hope this helps in resolving the issue.

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!