Error using trainNetwork: Invalid training data. The output size of the last layer does not match the response size.
37 views (last 30 days)
Show older comments
I was working on a neural network to identify deer from other wildlife, but when I tried to train it, this error popped up:
Error using trainNetwork (line 170)
Invalid training data. The output size ([1 1 1]) of the last layer does not match the response size ([300 400 3]).
I don't know what I am doing wrong here, if anyone could provide any suggestions/advice, that would be greatly appreciated. I've left the rest of the code for the program below if that would provide any additional insight into the problem.
nonDeerTrainSet = imageDatastore('/MATLAB Drive/Images/Training Images/Non-Deer');
nonDeerTrainSetSize = size(dir(['/MATLAB Drive/Images/Training Images/Non-Deer' '/*.jpg']),1);
%fprintf(1, 'nonDeerTrainSet made\n');
deerTrainSet = imageDatastore('/MATLAB Drive/Images/Training Images/Deer');
deerTrainSetSize = size(dir(['/MATLAB Drive/Images/Training Images/Deer' '/*.jpg']),1);
%fprintf(1, 'deerTrainSet made\n');
totalTrainingSetSize = deerTrainSetSize + nonDeerTrainSetSize;
trainingSet = combine(nonDeerTrainSet, deerTrainSet);
%Initialize the other factors needed for the net to run
netLayers = [imageInputLayer([400 600 3]),convolution2dLayer(12,25),reluLayer,fullyConnectedLayer(1),regressionLayer];
netOptions = trainingOptions("sgdm");
deerNet = trainNetwork(trainingSet, netLayers, netOptions);
0 Comments
Answers (2)
Srivardhan Gadila
on 22 Apr 2020
Based on the above information and code, I think you are trying to build a network to classify between the classes deer and Non-deer.
I see that there are some mistakes and the following are some suggestions:
imds = imageDatastore('/MATLAB Drive/Images/Training Images', 'IncludeSubfolders',true, 'FileExtensions','.jpg','LabelSource','foldernames');
3. The outputSize value of the fullyConnectedLayer must be the number of classes/number of labels for the classification problem, which is 2 in this case.
4. You can make use of other Input Arguments of the trainingOptions like MiniBatchSize, Shuffle, etc.
5. Refer to Create Simple Deep Learning Network for Classification, Deep Learning Tips and Tricks & List of Deep Learning Layers
The following code might help you:
trainingSet = imageDatastore('/MATLAB Drive/Images/Training Images', 'IncludeSubfolders',true, 'FileExtensions','.jpg','LabelSource','foldernames');
countEachLabel(trainingSet)
netLayers = [imageInputLayer([400 600 3]),convolution2dLayer(12,25),reluLayer,fullyConnectedLayer(2),softmaxLayer,classificationLayer];
netOptions = trainingOptions("sgdm",'MiniBatchSize',32, ...
'InitialLearnRate',0.01, ...
'MaxEpochs',4, ...
'Shuffle','every-epoch', ...
'Plots','training-progress');
deerNet = trainNetwork(trainingSet, netLayers, netOptions);
drummer
on 23 Oct 2020
Edited: drummer
on 23 Oct 2020
Hi,
PIPELINE:
% create imds
imds = imageDatastore('/MATLAB Drive/Images/Training Images', 'IncludeSubfolders',...
true, 'FileExtensions','.jpg','LabelSource','foldernames');
% split your deers and non-deers by LabelSource as in imds, using splitEachLabel.
[imdsTrain, imdsVal, imdsTest] = splitEachLabel(imds, 0.7, 0.2, 'randomized');
% resize by transforming your training set
augImdsTrain = transform(imdsTrain, @Transfc, 'IncludeInfo', true)
% From here, you could follow Srivardhan's suggestion
netLayers = [imageInputLayer([400 600 3]),...
convolution2dLayer(12,25),...
reluLayer,...
fullyConnectedLayer(2),...
softmaxLayer,...
classificationLayer];
netOptions = trainingOptions("sgdm",'MiniBatchSize',32, ...
'InitialLearnRate',0.01, ...
'MaxEpochs',4, ...
'Shuffle','every-epoch', ...
'Plots','training-progress');
deerNet = trainNetwork(augImdsTrain, netLayers, netOptions);
% function-handle - stays in the end of the code.
function [dataOut, info] = Transfc(data, info)
% here you resize your entire dataset properly
end
This way, you keep your original image sizes.
Cheers
0 Comments
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!