How to activate symbolic math toolbox

381 views (last 30 days)
Ajit More
Ajit More on 11 May 2020
Commented: Walter Roberson on 5 Oct 2024

Symbolic math toolbox

Answers (6)

Ameer Hamza
Ameer Hamza on 11 May 2020
You can go to this link: https://www.mathworks.com/mwaccount/ and check the toolbox associated with your license.
If you have the Symbolic toolbox, then you can download the MATLAB install it with the symbolic toolbox. If you already have MATLAB installed, then you can click you can click Add-ons and search for the symbolic toolbox and install it.

Vinitha
Vinitha on 5 Oct 2024
dy/dt=y^{2}
  3 Comments
Vinitha
Vinitha on 5 Oct 2024
Moved: Walter Roberson on 5 Oct 2024

% Clear workspace and command window
clear; clc;
T==2; %Final time

% Define symbolic variables
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));

% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the exact solution
disp('The exact solution is:');
disp(sol);

Walter Roberson
Walter Roberson on 5 Oct 2024
I do not understand how these solutions solve the problem of activating the Symbolic Toolbox ?

Sign in to comment.


Vinitha
Vinitha on 5 Oct 2024

% Ensure the Symbolic Math Toolbox is available
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);

% Specify initial condition
cond = v(0) == 0;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the solution
disp('The exact solution is:');
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);

% Specify initial condition
cond = v(0) == 0;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the solution
disp('The exact solution is:');
disp(sol);

% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);

  1 Comment
Vinitha
Vinitha on 5 Oct 2024
Moved: Walter Roberson on 5 Oct 2024
% Clear workspace and command window
clear; clc;
% Define the ODE as a function handle
ode = @(t, v) [-0.5 * v(1) + sec(t)]; % v(1) is v(t)
% Define boundary conditions
bc = @(va, vb) [va(1); vb(1) - 1]; % v(0) = 0 and v(T) = 1
% Define the final time
T = 2;
% Initial guess for v at t = 0 and t = T
initialGuess = [0; 1]; % v(0) = 0 and guess v(T) = 1
% Create a mesh for the solution
tspan = linspace(0, T, 100);
% Solve the boundary value problem
sol = bvp4c(ode, bc, bvpinit(tspan, initialGuess));
Error using bvparguments (line 99)
Error in calling BVP4C(ODEFUN,BCFUN,SOLINIT):
The derivative function ODEFUN should return a column vector of length 2.

Error in bvp4c (line 119)
bvparguments(solver_name,ode,bc,solinit,options,varargin);
% Extract the solution
t = sol.x; % time values
v = sol.y(1, :); % v(t) values
% Display the results
disp('The solution at final time T = 2 is:');
disp(v(end));
% Plot the results
figure;
plot(t, v, 'LineWidth', 2);
xlabel('Time (t)');
ylabel('v(t)');
title('Exact Solution of the ODE');
grid on;

Sign in to comment.


Vinitha
Vinitha on 5 Oct 2024
Edited: Walter Roberson on 5 Oct 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
Warning: Unable to find symbolic solution.
% Display the solution
disp('The exact solution is:');
The exact solution is:
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);

Vinitha
Vinitha on 5 Oct 2024
Edited: Walter Roberson on 5 Oct 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
Warning: Unable to find symbolic solution.
% Display the solution
disp('The exact solution is:');
The exact solution is:
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
Warning: Unable to find symbolic solution.
% Display the solution
disp('The exact solution is:');
The exact solution is:
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol)
v_exact = function_handle with value:
@()zeros(0,0)

Vinitha
Vinitha on 5 Oct 2024

% Clear workspace and command window
clear; clc;
T==2; %Final time

% Define symbolic variables
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));

% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the exact solution
disp('The exact solution is:');
disp(sol);

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!