How to calculate the jumper's final distance on this problem?

2 views (last 30 days)
This is a Matlab Grader problem for calculating the jumper's final distance with given conditions. I wrote the code down below from my lecture and I got an answer of 7.3323, but it's not correct, can anyone take a look please? Thank you.
function Dist = BJump
z0 = [0;0;pi/8;10];
dt = 0.1;
T = zeros(1,100);
T(1) = 0;
Z = zeros(4,100);
Z(:,1) = z0;
j = 1;
%for j = 1:100-1
while Z(2,j) >= 0
K1 = physics(T(j),Z(:,j));
K2 = physics(T(j) + dt/2,Z(:,j) + dt/2*K1);
K3 = physics(T(j) + dt/2,Z(:,j) + dt/2*K2);
K4 = physics(T(j) + dt,Z(:,j) + dt*K3);
Z(:,j+1) = Z(:,j) + dt/6*(K1 + 2*K2 + 2*K3 + K4);
T(j+1) = T(j) + dt;
j = j + 1;
end
plot(Z(1,1:j),Z(2,1:j))
x = Z(1,1:j);
Dist = x(end)
function dzdt=physics(t,z)
dzdt = 0*z;
dzdt(1) = z(4)*cos(z(3));
dzdt(2) = z(4)*sin(z(3));
dzdt(3) = -9.81/z(4)*cos(z(3));
D = (0.72)*(0.94)*(0.5)/2*(dzdt(1)^2 + dzdt(2)^2);
dzdt(4) = -D/80-9.81*sin(z(3));
end
end

Accepted Answer

David Hill
David Hill on 12 Jul 2020
function dist=BJump(v,theta,rho,s)
x=0;
g=9.81;
c=.72;
dt=.000001;%not sure how accurate you need
y=v*sin(theta)*dt;
while y>1e-7
dTheta=-g*cos(theta)*dt/v;
dv=(c*rho*s/2-g*sin(theta))*dt;
x=v*cos(theta)*dt+x;
v=v+dv;
theta=theta+dTheta;
y=y+v*sin(theta);
end
dist=x;
end
When I run this:
d=BJump(10,pi/8,.94,.5);%I get d=7.2748

More Answers (0)

Categories

Find more on Programming in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!