- Is this a homework assignment?
- Is the only requirement that the six parts have equal area? I'm wary of other assumptions you may be neglecting to mention. For example, would it be ok to just make vertical slices? Or do you need to find a single point in the interior, such that lines to the vertices separate the area equally?
How to split a polygon.
37 views (last 30 days)
Show older comments
Carlos Zúñiga
on 31 Aug 2020
Commented: Bruno Luong
on 31 Aug 2020
Hello everyone.
If I have a polygon with the following coordinates:
x=[0 4 7 5 1]; %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
How can I split the polygon formed by the coordinates shown bellow in for example six parts which area is equal to each other?
2 Comments
the cyclist
on 31 Aug 2020
Two questions before anyone spends time thinking about this:
Accepted Answer
Bruno Luong
on 31 Aug 2020
Edited: Bruno Luong
on 31 Aug 2020
Each slice has area of 9.5
x=[0 4 7 5 1]; %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
x0 = xmin+0.01;
b = zeros(1,n-1);
Q = cell(1,n);
Qk = polyshape(); % empty
for k=1:n-1
x0 = fzero(@(x) areafun(P, xmin, x, ymin, ymax)-k*A, x0);
b(k) = x0;
Qp = Qk;
[s, Qk] = areafun(P, xmin, b(k) , ymin, ymax);
Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
Q{k}.area
plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xmin, xmax, ymin, ymax)
R = polyshape([xmin xmax xmax xmin],[ymin ymin ymax ymax]);
Q = intersect(P,R);
s = Q.area;
end
6 Comments
Bruno Luong
on 31 Aug 2020
Star-like partitioning
x=[0 4 7 5 1]; %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
b = zeros(1,n-1);
Q = cell(1,n);
[xc,yc] = P.centroid;
r = sqrt(max((x-xc).^2+(y-yc).^2))*1.1;
Qk = polyshape(); % empty
x0 = 2*pi/n;
for k=1:n-1
x0 = fzero(@(tt) areafun(P, xc, yc, tt, r)-k*A, x0);
b(k) = x0;
Qp = Qk;
[s, Qk] = areafun(P, xc, yc, x0, r);
Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
Q{k}.area
plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xc, yc, tt, r)
ntt = max(ceil(abs(tt)*128),2);
phi = linspace(0,tt,ntt);
Q = polyshape([xc xc+r*cos(phi)],[yc yc+r*sin(phi)]);
Q = intersect(P,Q);
s = sign(tt)*Q.area;
end
More Answers (0)
See Also
Categories
Find more on Elementary Polygons in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!