Index in position 2 exceeds array bounds using crossval
2 views (last 30 days)
Show older comments
Dear all,
I got the following error when using crossval.
Error using crossval>evalFun (line 488)
The function '@(Xtr,Ytr,Xte)predict(fitlm(Xtr,Ytr(:,2)),Xte)' generated the following error:
Index in position 2 exceeds array bounds (must not exceed 1).
Error in crossval>getLossVal (line 525)
funResult = evalFun(funorStr,arg(1:end-1));
Error in crossval (line 424)
[funResult,outarg] = getLossVal(i, nData, cvp, data, predfun);
This is my code. The X and Y are stored in the attached .mat file.
%% Cross validation
hpartition = cvpartition(81,'Holdout',0.2);
idxTrain = training(hpartition);
Xtr = X(idxTrain,:);
Ytr = Y(idxTrain,:);
idxNew = test(hpartition);
Xte = X(idxNew,:);
for i = 1:2
for j = 1:3
fcn{i,1} = @(Xtr, Ytr, Xte) predict(fitlm(Xtr,Ytr(:,i)), Xte);
fcn{i,2} = @(Xtr, Ytr, Xte) predict(fitrsvm(Xtr,Ytr(:,i)), Xte);
fcn{i,3} = @(Xtr, Ytr, Xte) predict(fitrgp(Xtr,Ytr(:,i)), Xte);
mse(i,j) = crossval('mse', X, Y(:,i),'Predfun',fcn{i,j}, 'kfold',10);
end
end
0 Comments
Accepted Answer
Nagasai Bharat
on 23 Oct 2020
Hi,
The problem in above code was that crossval does the train-test spilt and it takes in the Ytr as column vector but you did provide Ytr are a 2-D Matrix due to which we were getting that array bound error.The below code snippet should resolve and simplify your issue.
load data
% hpartition = cvpartition(81,'Holdout',0.2);
% idxTrain = training(hpartition);
% Xtr = X(idxTrain,:);
% Ytr = Y(idxTrain,:);
% % Ytr_1 = Y(idxTrain,1);
% % Ytr_2 = Y(idxTrain,2);
% idxNew = test(hpartition);
% Xte = X(idxNew,:);
for i=1:2
for j = 1:3
fcn{i,1} = @(Xtr, Ytr, Xte) predict(fitlm(Xtr,Ytr), Xte);
fcn{i,2} = @(Xtr, Ytr, Xte) predict(fitrsvm(Xtr,Ytr), Xte);
fcn{i,3} = @(Xtr, Ytr, Xte) predict(fitrgp(Xtr,Ytr), Xte);
mse(i,j) = crossval('mse', X, Y(:,i),'Predfun',fcn{i,j}, 'kfold',10);
end
More Answers (0)
See Also
Categories
Find more on Classification Trees in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!