Improve network generalization NarX
2 views (last 30 days)
Show older comments
Very good I would do the following: divide my data into 10 parts and each train separately checking with other cells, is crosvalidation guess but I'm a little busy and I'm not sure how. I could explain a little further as performing autocorrelation, cross correlation and other steps to achieve better network generalization NarX and clarify concepts?
Thank you very much.
0 Comments
Accepted Answer
Greg Heath
on 15 Feb 2013
I just posted an answer to your question on the NEWSGROUP
Hope this helps
Thank you for formally accepting my answer.
Greg
2 Comments
Greg Heath
on 15 Feb 2013
Edited: Greg Heath
on 16 Feb 2013
If you would try your code on the polution_data set we can compare results. I have used the delays ID=1:2, FD=1:2 and H = 16 with dividetrain and MSEgoal = 0.08*Ndof*MSE00a/Neq. A lower goal will cause training to extend to maxepoch (default = 1000; I will change it to 100)). The results are R2a = 0.92 for openloop and 0.88 for closed loop.
I will be experimentinng with this data for some time: Linear trend removal, Significant delays, validation stopping and minimizing H. Not necessarily in that order.
Greg
More Answers (0)
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!