How to calculate confusion matrix , accuracy and precision
140 views (last 30 days)
Show older comments
Hi
I have two logical tables 100 x 100 for each that contain 0 & 1 values . one table for original values and other table is for predicted values
i want to know how can i make confusion matrix and calculate accuracy and precision for predicted values in comparision to original values
Here the tables:-
original values
predicted values
0 Comments
Answers (2)
Srivardhan Gadila
on 17 Dec 2020
You can refer to the following functions available in MATLAB to compute confusion matrix: Functions for computing "confusion matrix".
accuracy = sum(OrigValues == PredValues,'all')/numel(PredValues)
Make sure that the above computations are performed properly w.r.t the number of samples dimension and necessary changes are to be made based on it (i.e., Dimension of number of samples can be number of rows or number of columns or the number of tables itself in your case as it is not mentioned anywhere in the question).
0 Comments
Ayokunmi Opaniyi
on 22 May 2022
I will like to calculate the accuracy, precision and recall of my dataset in matlab.
can anyone please help me how to go about it with the sample code.
Thank you in advance.
1 Comment
sed
on 20 Aug 2022
figure
cm=confusionchart(Ytest,YPred)
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
cm.Title = ' Confusion Matrix';
[m,order]=confusionmat(Ytest,YPred);
Diagonal=diag(m);
sum_rows=sum(m,2);
Precision=Diagonal./sum_rows;
Overall_Precision=mean(Precision)
sum_col=sum(m,1);
recall=Diagonal./sum_col';
overall_recall=mean(recall)
F1_Score=2*((Overall_Precision*overall_recall)/(Overall_Precision+overall_recall))
See Also
Categories
Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!