Multiplication of very large matrix
3 views (last 30 days)
Show older comments
Hello everyone,
Could anyone help me in re-writing the following equation to make the processing faster. N here is the number of points and it could be 50,000. D is a diagonal matrix where only the diagonal contains values and the other elements are zeros.
M=eye(N)-((1./max((ones(N)'*D*ones(N)),eps))*(ones(N)*ones(N)'*D));
8 Comments
Accepted Answer
Jan
on 14 Dec 2020
Edited: Jan
on 14 Dec 2020
How strange: The comments above have not been displayed on my other computer. So this answer was written 1 hour after MA's comment.
In ones(N)*ones(N)' the transposition is completely meaningless. The result can be obtained much cheaper by: repmat(N, [N, N]). The matrox multiplication with this matrix can be formulated much cheaper:
The multiplication by () is an extremly expensive way to calculate:
A = ones(N) * ones(N)' * D
B = sum(D, 1) * N
Now B is a row vector only, but A is only a blownup version with N repetitions.
Because D is a diagonal matrix, you can omit the sum also.
Equivalently for ones(N)'*D*ones(N) : Of course you cannot simply omit the multiplication, but you can express it much cheaper by: sum(D(:)) or cheaper: sum(diag(D)) .
DD = diag(D);
M = eye(N) - N^2 * DD.' ./ max(sum(DD), eps);
Note, that this matrix is extremely redundant: All columns contain the same value except for the diagonal, which is 1 smaller. An efficient implementation would exploit this instead of creating a large matrix.
0 Comments
More Answers (0)
See Also
Categories
Find more on Operating on Diagonal Matrices in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!