solving system of equations
1 view (last 30 days)
Show older comments
Hii, i am solving the system of the equations using excel data. I wrote the code for the system of the equations.but the problem is i am not getting the result here can anyone help me to solve yms N J
Qo=xlsread('suspended.xlsx','A:A')
R=xlsread('suspended.xlsx','B:B')
No=xlsread('suspended.xlsx','C:C')
X=xlsread('suspended.xlsx','D:D')
V = 2435 ;
k = 1.076 ;
Kn = 0.27 ;
k=1.076
Y=0.39
kd=0.04
bs=0.15
Xf=0.49
Df=1.04
Dw=1.3
L=0.04
a=2.24
bt=kd+bs
Nstar=N/Kn;
Nmin=Kn/((Y*k/bt)-1)
Lstar=L*(sqrt(k*Xf/Kn*Df))*Df*Dw;
jstar=(J/sqrt(Kn*k*Xf*Df));
Nstar_min=(1/(Y*k*(bt-1)));
nX = size(X,1 );
solutions = cell(1, nX);
for S=1:nX
solutions{S}=solve(Qo(S)*(1+R(S))*(No(S)-N)-V*(a* J+((X(S)*k*N)/(Kn+N))),N,J)
end
eqn1=sqrt((Lstar^1.76)+5.2*(Nstar-Nstar_min)-(Lstar^0.88))/2.6==jstar^0.88;
soln=vpasolve([eqn1],[N,J]);
celldisp(solutions)
0 Comments
Answers (1)
Star Strider
on 25 Jan 2021
This runs without error (after several changes):
V = 2435 ;
k = 1.076 ;
Kn = 0.27 ;
k=1.076;
Y=0.39;
kd=0.04;
bs=0.15;
Xf=0.49;
Df=1.04;
Dw=1.3;
L=0.04;
a=2.24;
bt=kd+bs;
Nstar=@(N)N/Kn;
Nmin=Kn/((Y*k/bt)-1);
Lstar=L*(sqrt(k*Xf/Kn*Df))*Df*Dw;
jstar=@(J)(J/sqrt(Kn*k*Xf*Df));
Nstar_min=(1/(Y*k*(bt-1)));
nX = size(X,1 );
% solutions = cell(1, nX);
solutions = zeros(2,4);
for S=1:nX
solutions(:,S)=fsolve(@(b) Qo(S)*(1+R(S))*(No(S)-b(2))-V*(a* b(1)+((X(S)*k*b(2))/(Kn+b(2)))), rand(2,1)); % b(1) = J, b(2) = N
end
eqn1=@(b) sqrt((Lstar^1.76)+5.2*(Nstar(b(2))-Nstar_min)-(Lstar^0.88))/2.6 - jstar(b(1)).^0.88;
soln=fsolve(eqn1,rand(2,1));
It is not possible to mix symbolic functions with non-symbolic expressions. I use Optimization Toolbox functions here instead of Symbolic Math Toolbox functions.
I leave it to you to interpret the results, since I have no idea what problem the code solves.
0 Comments
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!