function performance, same functions has very different speed
1 view (last 30 days)
Show older comments
Dear forum, I have two functions
function [Md] = MDx( M, dx )
w = size(M,2);
for i=2:w-1
Md(:,i) = ( M(:,i+1) - M(:, i-1) )/(2*dx);
end
Md(:,1) = ( M(:,2) - M(:, 1) )/dx;
Md(:,w) = ( M(:,w) - M(:, w-1) )/dx;
return
and
function [Md] = MDy( M, dy )
h = size(M,1);
for i=2:h-1
Md(i,:) = ( M(i+1,:) - M(i-1, :) )/(2*dy);
end
Md(1,:) = ( M(2,:) - M(1, :) )/dy;
Md(h,:) = ( M(h,:) - M(h-1,:) )/dy;
return
this functions are computing gradient in X and Y directions, they are quite same but on square matrix MDx is 40 times faster than MDy, what is the reason for that?
0 Comments
Answers (1)
John Doe
on 2 May 2013
Edited: John Doe
on 2 May 2013
I believe this is due to the way matrices are stored in Matlab.
A matrix is stored column-wise, as below:
A = [1 2 3;4 5 6;7 8 9];
A(1,1) = A(1) = 1;
A(2,1) = A(2) = 4;
...
A(1,3) = A(7) = 3;
A(:,1) = A(1:3);
A(1,:) = A([1 4 7]);
This makes it faster to do calculations on entire columns, rather than rows, thus MDx is fastest.
0 Comments
See Also
Categories
Find more on Schedule Model Components in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!