You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
identity matrix nth order
1 view (last 30 days)
Show older comments
Jasneet Singh
on 19 Mar 2021
n = [1:1:20];
M=eye(n).*0.02
its not working !! i got an error that says eye() can't draw n dimensional arrays..can it be corrected ?
if not is there any other alternative to this?
Answers (2)
ANKUR KUMAR
on 19 Mar 2021
Edited: ANKUR KUMAR
on 19 Mar 2021
n=20;
eye(n) % identity matrix of order 20
eye(randi(50,1,1)) % identity matrix of a random order generated by randi
VBBV
on 27 Feb 2022
n = [1:1:20];
for k = 1:length(n)
M{k}=eye(n(k)).*0.02;
X = sprintf('Identity matrix of order %0d',k);
disp(X)
I = M{k}
end
Identity matrix of order 1
I = 0.0200
Identity matrix of order 2
I = 2×2
0.0200 0
0 0.0200
Identity matrix of order 3
I = 3×3
0.0200 0 0
0 0.0200 0
0 0 0.0200
Identity matrix of order 4
I = 4×4
0.0200 0 0 0
0 0.0200 0 0
0 0 0.0200 0
0 0 0 0.0200
Identity matrix of order 5
I = 5×5
0.0200 0 0 0 0
0 0.0200 0 0 0
0 0 0.0200 0 0
0 0 0 0.0200 0
0 0 0 0 0.0200
Identity matrix of order 6
I = 6×6
0.0200 0 0 0 0 0
0 0.0200 0 0 0 0
0 0 0.0200 0 0 0
0 0 0 0.0200 0 0
0 0 0 0 0.0200 0
0 0 0 0 0 0.0200
Identity matrix of order 7
I = 7×7
0.0200 0 0 0 0 0 0
0 0.0200 0 0 0 0 0
0 0 0.0200 0 0 0 0
0 0 0 0.0200 0 0 0
0 0 0 0 0.0200 0 0
0 0 0 0 0 0.0200 0
0 0 0 0 0 0 0.0200
Identity matrix of order 8
I = 8×8
0.0200 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0
0 0 0 0.0200 0 0 0 0
0 0 0 0 0.0200 0 0 0
0 0 0 0 0 0.0200 0 0
0 0 0 0 0 0 0.0200 0
0 0 0 0 0 0 0 0.0200
Identity matrix of order 9
I = 9×9
0.0200 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0
0 0 0 0 0 0.0200 0 0 0
0 0 0 0 0 0 0.0200 0 0
0 0 0 0 0 0 0 0.0200 0
0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 10
I = 10×10
0.0200 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0
0 0 0 0 0 0 0 0.0200 0 0
0 0 0 0 0 0 0 0 0.0200 0
0 0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 11
I = 11×11
0.0200 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0
0 0 0 0 0 0 0 0 0 0.0200 0
Identity matrix of order 12
I = 12×12
0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0
Identity matrix of order 13
I = 13×13
0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0
Identity matrix of order 14
I = 14×14
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0
Identity matrix of order 15
I = 15×15
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0
Identity matrix of order 16
I = 16×16
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0
Identity matrix of order 17
I = 17×17
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0
Identity matrix of order 18
I = 18×18
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0
Identity matrix of order 19
I = 19×19
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
Identity matrix of order 20
I = 20×20
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
Try using a loop
See Also
Categories
Find more on Operating on Diagonal Matrices in Help Center and File Exchange
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)