FFT without inbuilt functions
24 views (last 30 days)
Show older comments
Onur Dikilitas
on 22 Apr 2021
Answered: ROBIN SINGH SOM
on 7 Sep 2021
I am trying to find fft for ECG signal. I am using .mat files. Right now I did the easy part with using inbuilt fft but I need to find fft without inbuilt funcitons beause of academic reasons. However I did not quite understand create a algorithm for fft and combine it .mat file.
clc;
load ('s0010_rem.mat')
ECGsignal = val;
Fs=1000;
L = 1000;
t = (0:length(ECGsignal)-1)/Fs;
val1 = val(1,:)/Fs;
val2 = val(2,:)/Fs;
val3 = val(3,:)/Fs;
val4 = val(4,:)/Fs;
val5 = val(5,:)/Fs;
val6 = val(6,:)/Fs;
val7 = val(7,:)/Fs;
val8 = val(8,:)/Fs;
val9 = val(9,:)/Fs;
val10 = val(10,:)/Fs;
The part of fft with inbuilt:
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
val1_fft = fft(val1,NFFT)/L;
val2_fft = fft(val2,NFFT)/L;
val3_fft = fft(val3,NFFT)/L;
val4_fft = fft(val4,NFFT)/L;
val5_fft = fft(val5,NFFT)/L;
val6_fft = fft(val6,NFFT)/L;
val7_fft = fft(val7,NFFT)/L;
val8_fft = fft(val8,NFFT)/L;
val9_fft = fft(val9,NFFT)/L;
val10_fft = fft(val10,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);
0 Comments
Accepted Answer
More Answers (2)
ROBIN SINGH SOM
on 1 Sep 2021
% 1sep2021
% fft operation without using inbuilt function
% only capable to compute fft upto N = 128 but it can be easily expendable
clc
clear
% generating random signal of length 30
x = randi([-5,5],1,30);
% length of the signal
N = length(x);
% number of stage required
M = log2(N);
% adding zeros
if (rem(M,1) ~= 0)
re =rem(M,1);
M=M-re+1;
Ne = 2^M;
x = [x,zeros(1,Ne-N)];
else
Ne = N;
end
% calc. using inbuild function
x_fft =fft(x);
% bitreversing
x = bitrevorder(x);
% instialization of variables used for different stages
temp = zeros(1,Ne);
temp2 = zeros(1,Ne);
temp3 = zeros(1,Ne);
temp4 = zeros(1,Ne);
temp5 = zeros(1,Ne);
temp6 = zeros(1,Ne);
temp7 = zeros(1,Ne);
% code
for l = 1:M
if l==1
for t=0:2:Ne-1
temp(t+1:t+2) = temp(t+1:t+2) + myfun(x(t+1:t+2),2^l);
end
out = temp;
end
if l==2
for k=0:4:Ne-1
temp2(k+1:k+4) = temp2(k+1:k+4) + myfun(temp(k+1:k+4),2^l);
end
out= temp2;
end
if l==3
for k=0:8:Ne-1
temp3(k+1:k+8) = temp3(k+1:k+8) + myfun(temp2(k+1:k+8),2^l);
end
out= temp3;
end
if l==4
for k=0:16:Ne-1
temp4(k+1:k+16) = temp4(k+1:k+16) + myfun(temp3(k+1:k+16),2^l);
end
out= temp4;
end
if l==5
for k=0:32:Ne-1
temp5(k+1:k+32) = temp5(k+1:k+32) + myfun(temp4(k+1:k+32),2^l);
end
out= temp5;
end
if l==6
for k=0:64:Ne-1
temp6(k+1:k+64) = temp6(k+1:k+64) + myfun(temp5(k+1:k+64),2^l);
end
out= temp6;
end
if l==7
for k=0:128:Ne-1
temp7(k+1:k+128) = temp7(k+1:k+128) + myfun(temp6(k+1:k+128),2^l);
end
out= temp7;
end
end
x % values of x
x_fft % fft calc. using inbuild function
out % fft calc. using myfunction (DIT)
figure()
hold on
stem(abs(out),'filled','LineStyle',"--","Marker","diamond","Color",'b',"LineWidth",1)
title("Without Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem(abs(x_fft),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
title("With Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem(abs(x_fft),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
stem(abs(out),'filled','LineStyle',"none","Marker","diamond","Color",'b',"LineWidth",1)
title("Overlapping","FontSize",15)
hold off
function out = myfun(inp,N)
twi = twiddle(N);
inp1 = [inp(1:N/2),inp(1:N/2)];
inp2 = [inp(N/2+1:N),inp(N/2+1:N)];
out = zeros(1,N);
for i=1:N
out(i) = inp1(i) + twi(i)*inp2(i);
end
end
function out = twiddle(N)
out = zeros(1,N);
for k=1:N
out(k) = exp(-1j*2*pi*(k-1)/N);
end
end
% author: Robin Singh Som
0 Comments
ROBIN SINGH SOM
on 7 Sep 2021
% 7sep2021
% fft operation without using inbuilt function
clc
clear
q = 10000;
% generating sin signale with 10000 samples
x = sin(2*pi*0.2*(0:q-1));
% length of the signal
N = length(x);
M = log2(N);
% adding zeros
if (rem(M,1) ~=0)
re = rem(M,1);
M = M-re+1;
Ne = 2^M;
x = [x,zeros(1,Ne-N)];
else
Ne = N;
end
N = Ne;
% number of stages
M = log2(N);
% calc. using inbuild function
x_fft =fft(x);
% bitreversing
x = bitrevorder(x);
% code
for l =1:M
k = 2^l;
w = exp((-1j*2*pi*(0:k-1))./(k));
for t=0:k:N-1
z(t+1:t+k) = [x(t+1:t+k/2)+x(t+k/2+1:t+k) .* w(1:k/2) , x(t+1:t+k/2)+x(t+k/2+1:t+k).*w(k/2+1:k)] ;
end
x = z;
z = 0;
end
out = x;
figure()
hold on
stem((0:N-1/N),(abs(out)),'filled','LineStyle',"--","Marker","diamond","Color",'b',"LineWidth",1)
title("Without Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem((0:N-1/N),(abs(x_fft)),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
title("With Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem(abs(x_fft),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
stem(abs(out),'filled','LineStyle',"none","Marker","diamond","Color",'b',"LineWidth",1)
title("Overlapping","FontSize",15)
hold off
%robin singh
0 Comments
See Also
Categories
Find more on Fourier Analysis and Filtering in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!