Adding and generation of shot noise to a gaussian chirp signal.

11 views (last 30 days)
Hi,
How can i adding shot noise to the gaussian chirp signal?
signal codes :
clc; clear; close all;
%--------------------------------------------------------------
fs = 1e3; dt = 1/fs; t = 0:dt:22.5e-3; % signal evaluation time
f1 = 29.25e6; f2 = 30.75e6;
c = (f2-f1)/(t(end)-t(1));
n = (-511:512)'; % Timeline
sigmas = exp(log(2):.3:log(200)); % Scales
w = exp(-.5*(n.^2)*sigmas.^(-2)); % Window Function
% Gaussian Chirp
chirps = w.*cos(n*sigmas.^(-1)*2*pi*5 + (c/2)*(n/sigmas').^2);
x = abs(chirps(:, 15)); % base signal
figure; plot(x); title('bidirectional gaussian chirp signal')
xlabel('Time(s)'); ylabel('Amplitude'); axis tight
%--------------------------------------------------------------
%adding shot noise
y = []; num_itter = 30; % number of itterations
for i = 1:num_itter
% append
y = [y; x];
end
Y = zeros(size(t)); Y(1:length(y)) = y;
figure; plot(t, abs(Y)); title('the final signal') axis tight
%//////////////////////////////////////////////////////////////////////////////////////////////////////
i write another code for generating this chirp gaussian signal but i can add shot noise to it:
clear all; clc
%--------------------------------------------------------------
% chirp signal generation
fs=1e3; t=0:1/fs:1;
f1=0; f2=20;
a=(f2-f1)/(t(end)-t(1)); f=f1+a*t;
x=cos(2*pi*f.*t);
subplot(2,1,1); plot(t,x); title(['down chirp signal']); xlabel('Time(s)'); ylabel('Amplitude');
% gaussian pulse generation
sigma=0.1; t1=-0.5:1/fs:0.5;
variance=sigma^2; w=1/(sqrt(2*pi*variance))*(exp(-t1.^2/(2*variance)));
subplot(2,1,2) plot(t1,w,'b'); title(['Gaussian Pulse \sigma=', num2str(sigma),'s']);
xlabel('Time(s)'); ylabel('Amplitude');
% gaussian chirp pulse generation
figure; xw = w(:) .* x(:);
plot(t,abs(xw)) xlim([0 1])\ xlabel('Time(s)'); ylabel('Amplitude');
title(['gaussian down chirp signal']);
%adding shot noise
y = []; num_itter = 32; % number of itterations
for i = 1:num_itter
% append
y = [y; xw];
end
T=0:1/fs:32.1; Y = zeros(size(T)); Y(1:length(y)) = y;
figure; plot(T,abs( Y));
title('the transmitting signal') xlabel('Time(s)'); ylabel('Amplitude');
axis tight
please help me!!!
thanks,Majid.

Answers (1)

Mathieu NOE
Mathieu NOE on 16 May 2021
hello
minor bug fixed in the last lines (see comments ) - it's the time vector definition (length) was incorrect
%--------------------------------------------------------------
% chirp signal generation
fs=1e3; t=0:1/fs:1;
f1=0; f2=20;
a=(f2-f1)/(t(end)-t(1)); f=f1+a*t;
x=cos(2*pi*f.*t);
subplot(2,1,1); plot(t,x); title(['down chirp signal']); xlabel('Time(s)'); ylabel('Amplitude');
% gaussian pulse generation
sigma=0.1; t1=-0.5:1/fs:0.5;
variance=sigma^2; w=1/(sqrt(2*pi*variance))*(exp(-t1.^2/(2*variance)));
subplot(2,1,2) ;plot(t1,w,'b'); title(['Gaussian Pulse \sigma=', num2str(sigma),'s']);
xlabel('Time(s)'); ylabel('Amplitude');
% gaussian chirp pulse generation
figure; xw = w(:) .* x(:);
plot(t,abs(xw));
xlim([0 1]); xlabel('Time(s)'); ylabel('Amplitude');
title(['gaussian down chirp signal']);
%adding shot noise
y = []; num_itter = 32; % number of itterations
for i = 1:num_itter
% append
y = [y; xw];
end
T=(0:length(y)-1) *1/fs; % time axis fixed
% Y = zeros(size(T)); Y(1:length(y)) = y; % no need for this line
figure; plot(T,abs(y));
title('the transmitting signal') ;
xlabel('Time(s)'); ylabel('Amplitude');
axis tight
  5 Comments
Mathieu NOE
Mathieu NOE on 16 May 2021
hello
I found this Fex submission
I slightly modified the code to not use exprnd which requires the Statistics and Machine Learning Toolbox.
% Simulate Shot Noise
% Here we generate a Poisson Impulse Process (a kind of white noise)
clear all; close all; clc
%%
mu = 1; % average wait time between events
N = 50; % number of events along the simulation
t_tick = 1e-3; % time tick for plotting/simulating
% time_between = exprnd(mu, N, 1); % random waiting times between events (exponential pdf)
time_between = -mu*log(rand(N, 1)); % random waiting times between events (exponential pdf)
time = cumsum( time_between ); % actual time of events is the cumulative sum of waiting times
time = round( time/t_tick )*t_tick; % round
time_data1 = [time'; ones(1,N)]'; % a matrix containing event times + '1' per each event
time_data2 = [ (0:t_tick:max(time) )' zeros( 1+max(time)/t_tick, 1 ) ]; % a matrix containing non-event time ticks + '0' per each time tick. This is used for plotting
time_data3=[time_data1; time_data2]; % concatenate both matrices
time_data4=sortrows(time_data3,1); % sort according to time (column 1)
plot(time_data4(:,1), time_data4(:,2) )
ylim( [-0.1 1.1]); grid
ylabel('Events'); title(['Average=' num2str(1/mu) ' events/second']);
%% Now plot fft of the generated Poisson Impulse Process (white noise)
Y=abs(fft(time_data4(:,2)));
f=0:1/max(time):0.5/t_tick;
figure
plot( f,Y(1:length(f)) )
ylabel('psd'); xlabel('frequency [Hz]'); title('PSD');xlim([-10 500]); ylim([-1 54])
maybe you can add this portion of code to yours
majid
majid on 16 May 2021
thank you!
I saw these codes before but I cant add it to my signal.

Sign in to comment.

Categories

Find more on Simulation in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!