Problem in Curve fitting
5 views (last 30 days)
Show older comments
Hi,
I have a sets of data [x,y] that I want to fit with a function F(v,x) where v contains six free parameters.
x=[70,75,80,83,90,100]; y=[1,1,0.97,0.95,0.9,0];
I found the best fitted curve by cftool for this data set (polynomial degree 5):
but the result is different when I use lsqcurvefit.
v0=[0,0,0,0,0,0];
fun = @(v,x)v(1)*x.^5 + v(2)*x.^4 + v(3)*x.^3 + v(4)*x.^2 + v(5)*x + v(6);
x=[70,75,80,83,90,100];y=[1,1,0.97,0.95,0.9,0];
v=lsqcurvefit(fun,v0,x,y);
times = linspace(x(1),x(end));
plot(x,y,'ko',times,fun(v,times),'b-')
this is the result:
It seems lsqurvefit did not fitted the curve to the points.
any idea that why it does not work for me?
0 Comments
Accepted Answer
Matt J
on 20 May 2021
Edited: Matt J
on 20 May 2021
Although polyfit is the better tool here, both polyfit and lsqcurvefit will be challenged by the scaling of your xdata, which is making the problem highly ill-conditioned. Rescaling helps considerably, as shown below,
v0=[0,0,0,0,0,0];
fun = @(v,x)v(1)*x.^5 + v(2)*x.^4 + v(3)*x.^3 + v(4)*x.^2 + v(5)*x + v(6);
x=[70,75,80,83,90,100];y=[1,1,0.97,0.95,0.9,0];
x=(x-mean(x))/std(x);
[v,fval,~,exitflag]=lsqcurvefit(fun,v0,x,y)
times = linspace(x(1),x(end));
plot(x,y,'ko',times,fun(v,times),'b-')
1 Comment
Matt J
on 20 May 2021
Another way to see the need for scaling is to look its effect on the condition number of the Vandermonde matrix,
x=[70,75,80,83,90,100];
cond(vander(x)),
cond(vander((x-mean(x))/std(x)))
More Answers (2)
Walter Roberson
on 20 May 2021
fun = @(v,x)v(1)*x.^5 + v(2)*x.^4 + v(3)*x.^3 + v(4)*x.^2 + v(5)*2 + v(6);
^^^^^^
Should be
v(5)*x
6 Comments
Walter Roberson
on 20 May 2021
However, it stops when it thinks the residue is good enough, or if it gets too very small step sizes.
It is a convex problem
Your v = -0.0381 -0.0852 -0.0060 0.0310 -0.0643 0.9500 has two sign changes, so the function itself is not convex.
Matt J
on 20 May 2021
Edited: Matt J
on 20 May 2021
However, it stops when it thinks the residue is good enough, or if it gets too very small step sizes.
Yes, the ill-conditioning of the problem does cause one of these lsqcurvefit stopping criteria to be triggered prematurely, and where it stops will indeed depend on the initial point.
Your v = -0.0381 -0.0852 -0.0060 0.0310 -0.0643 0.9500 has two sign changes, so the function itself is not convex.
Yes, the polynomial being fitted is surely not convex as a function of x as we can also see from the plots. However, the least squares objective is convex as a function of v, which is why, in theory, lsqcurvefit should be globally convergent for this problem.
See Also
Categories
Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!