Circle plotting on different Planes
24 views (last 30 days)
Show older comments
Hey,
I am trying to plot a series of 2D circle in a 3D plot, which are all on slightly different planes (orientated at different angles).
The information I have is;
Centers of the circles;
X = [2 4 5 7];
Y = [0 2 1 0];
Z = [1 3 5 7];
The radii for the circles are the same at 0.5 units.
When I plot these circles I want to see them orientated so that the normal from each circle is pointing in the direction of the next circle. In other words, the plane the circle is drawn on will be perpendicular to the line joining the centers.
the final picture would look like a small section of a pipe.
How could I achieve this?
All help is greatly appreciated.
0 Comments
Accepted Answer
Attila
on 10 Sep 2013
Edited: Attila
on 10 Sep 2013
Hi,
so your problem is more like math-related right?
If you already have the coordinates of the unoriented circle points, you should multiply them with the result of this, like
Rotated = Rx * Ry * Rz * original
(first circle with the first 3 matrices, etc):
clear all, close all, clc
X = [2 4 5 7];
Y = [0 2 1 0];
Z = [1 3 5 7];
r = 0.5
Coords = [X;Y;Z]
Coords_inc = Coords;
Coords_inc(:,3) = Coords(:,4) - Coords(:,3);
Coords_inc(:,2) = Coords(:,3) - Coords(:,2);
Coords_inc(:,1) = Coords(:,2) - Coords(:,1)
x = 1;
y = 2;
z = 3;
hold on
color = ['r' 'g' 'b' 'k'];
theta = -atan(Coords_inc(y,:)./Coords_inc(z,:)); % angle around x
phi = atan(Coords_inc(x,:)./Coords_inc(z,:));% angle 2 (y)
psi = atan(Coords_inc(y,:)./Coords_inc(x,:));% angle 3 (z)
for i=1:4
Rx = [1 0 0; 0 cos(theta(i)) -sin(theta(i)); 0 sin(theta(i)) cos(theta(i))]
Ry = [cos(phi(i)) 0 sin(phi(i)); 0 1 0; -sin(phi(i)) 0 cos(phi(i))]
Rz = [cos(psi(i)) -sin(psi(i)) 0; sin(psi(i)) cos(psi(i)) 0; 0 0 1]
t = 0:0.1:2*pi
x = cos(t)
y = sin(t)
z = zeros(1,length(t))
tol = [X(i); Y(i); Z(i)]
base = [x;y;z]
rotated = Rx*Ry*Rz*base
plot3(rotated(1,:)+X(i),rotated(2,:)+Y(i),rotated(3,:)+Z(i), color(i))
axis equal
end
This code snippet calculates the required orientations and then builds the required rotation matrices.
7 Comments
More Answers (2)
Matt J
on 10 Sep 2013
You could start by plotting a prototype circle in the xy plane. Then roto-translate them in 3D using a transformation
R*points + t
where R is a 3x3 rotation matrix and t is a translation vector. This FEX file might help with that
Finally, use scatter3() to plot the transformed points.
4 Comments
Grzegorz Knor
on 10 Sep 2013
Edited: Grzegorz Knor
on 10 Sep 2013
Try this code:
X = [2 4 5 7];
Y = [0 2 1 0];
Z = [1 3 5 7];
r = 0.5;
[x,y,z] = cylinder(r*ones(size(X)),100);
hold on
for k=length(X):-1:1
x(k,:) = x(k,:)+X(k);
y(k,:) = y(k,:)+Y(k);
z(k,:) = z(k,:)+Z(k);
h(k) = plot3(x(k,:),y(k,:),z(k,:),'r-');
direction = rand(1,3);
alpha = randi(90);
rotate(h(k),direction,alpha)
end
hold off
view(3)
axis equal
I've used random rotation directions and angles. Just calculate the proper values and replace in the code above.
3 Comments
Grzegorz Knor
on 10 Sep 2013
First of all there is a small mistake, should be:
z(k,:) = Z(k);
instead of:
z(k,:) = z(k,:)+Z(k);
Each circle should be perpendicular to the line connecting its center point with the center point of the next circle, right? And what about last circle and its orientation?
See Also
Categories
Find more on 2-D and 3-D Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!