Problem 734. Ackermann's Function
Ackermann's Function is a recursive function that is not 'primitive recursive.'
The first argument drives the value extremely fast.
A(m, n) =
- n + 1 if m = 0
- A(m − 1, 1) if m > 0 and n = 0
- A(m − 1,A(m, n − 1)) if m > 0 and n > 0
A(2,4)=A(1,A(2,3)) = ... = 11.
% Range of cases % m=0 n=0:1024 % m=1 n=0:1024 % m=2 n=0:128 % m=3 n=0:6 % m=4 n=0:1
There is some deep recusion.
Input: m,n
Out: Ackerman value
Ackermann(2,4) = 11
Practical application of Ackermann's function is determining compiler recursion performance.
Solution Stats
Problem Comments
-
2 Comments
Richard Zapor
on 5 Jun 2012
Solution 15 is, to me, a novel cell array index implementation.
Jean-Marie Sainthillier
on 19 Jul 2013
Efficiently to crash my Matlab.
Solution Comments
Show commentsProblem Recent Solvers74
Suggested Problems
-
Find relatively common elements in matrix rows
2086 Solvers
-
2448 Solvers
-
Back to basics 9 - Indexed References
445 Solvers
-
Matrix with different incremental runs
514 Solvers
-
Convert given decimal number to binary number.
2098 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!