Main Content

Results for

Independent researcher: Nguyễn Khánh Tùng
ORCID: 0009-0002-9877-4137
Email: traiphieu.com@gmail.com
Hello everyone,
I would like to share some results from my recent research on the NKTg law of variable inertia and how it was experimentally verified using NASA JPL Horizons data (Dec 30–31, 2024).
🔹 What is the NKTg Law?
The law states that an object’s tendency of motion depends on the interaction between its position (x), velocity (v), and mass (m) through the conserved quantity:
NKTg1 = x * (m * v)
Here, m * v is the linear momentum.
If NKTg1 > 0 → the object tends to move away from equilibrium.
If NKTg1 < 0 → the object tends to return to equilibrium.
This law provides a new framework for analyzing orbital dynamics.
🔹 Research Objective
Interpolate the masses of all 8 planets using the NKTg law.
Compare results with NASA’s official planetary masses on 31/12/2024.
Test sensitivity for Earth’s mass loss as measured by GRACE / GRACE-FO missions.
🔹 Key Results
Table 1 – Mass Interpolation (31/12/2024)
Planet Interpolated Mass (kg) NASA Mass (kg) Δm Remarks
Mercury 3.301×10^23 3.301×10^23 ≈0 Perfect match
Venus 4.867×10^24 4.867×10^24 ≈0 Negligible error
Earth 5.972×10^24 5.972×10^24 ≈0 GRACE confirms slight variation
Mars 6.417×10^23 6.417×10^23 ≈0 Perfect match
Jupiter 1.898×10^27 1.898×10^27 ≈0 Stable mass
Saturn 5.683×10^26 5.683×10^26 ≈0 Error ≈ zero
Uranus 8.681×10^25 8.681×10^25 ≈0 Matches Voyager 2 data
Neptune 1.024×10^26 1.024×10^26 ≈0 Perfect match
Error rate: < 0.0001% across all planets.
🔹 Earth’s Mass Variation
NASA keeps Earth’s mass constant in official datasets.
GRACE/GRACE-FO show Earth loses ~10^20–10^21 kg annually (gas escape, ice melt, groundwater loss).
NKTg interpolation detected a slight decrease (~3 × 10^19 kg in 2024), which is within GRACE’s measured range.
This demonstrates the sensitivity of the NKTg model in detecting subtle real-world changes.
🔹 Why This Matters
Accuracy: NKTg interpolation perfectly matched NASA’s planetary masses.
Conservation: NKTg1 appears to be a conserved orbital quantity across both rocky and gas planets.
Applications:
  • Real-time planetary mass estimation using (x, v) data.
  • Integration into orbital mechanics simulations in MATLAB.
  • Potential extensions into astrophysics and engineering models.
🔹 Conclusion
The NKTg law provides a novel way to interpolate planetary masses with extremely high accuracy, while also being sensitive to subtle physical changes like Earth’s gradual mass loss.
This could open up new opportunities for:
  • Data-driven planetary modeling in MATLAB.
  • Improved sensitivity in detecting small-scale variations not included in standard NASA datasets.
References:
  • NASA JPL Horizons (planetary positions & velocities)
  • NASA Planetary Fact Sheet (official masses)
  • GRACE / GRACE-FO Mission Data (Earth mass loss)
I’d be very interested in hearing thoughts from the community about:
  • How to integrate the NKTg model into MATLAB orbital simulations.
  • Whether conserved quantities like NKTg1 could provide practical value beyond astronomy (e.g., physics simulations, engineering).
You can refer to the following four related articles to gain a deeper understanding of the NKTg Law and its applications
Best regards,
Nguyen Khanh Tung
Yann Debray
Yann Debray
Last activity on 4 Sep 2025

I saw this YouTube short on my feed: What is MATLab?
I was mostly mesmerized by the minecraft gameplay going on in the background.
Found it funny, thought i'd share.
Nicolas Douillet
Nicolas Douillet
Last activity on 2 Sep 2025

Trinity
  • It's the question that drives us, Neo. It's the question that brought you here. You know the question, just as I did.
Neo
  • What is the Matlab?
Morpheus
  • Unfortunately, no one can be told what the Matlab is. You have to see it for yourself.
And also later :
Morpheus
  • The Matlab is everywhere. It is all around us. Even now, in this very room. You can feel it when you go to work [...]
The Architect
  • The first Matlab I designed was quite naturally perfect. It was a work of art. Flawless. Sublime.
[My Matlab quotes version of the movie (Matrix, 1999) ]
David
David
Last activity on 29 Aug 2025

I’d like to take a moment to highlight the great contributions of one of our community members, @Paul, who is fast approaching an impressive 5,000 reputation points!
Paul has built his reputation the best way possible - by generously sharing his knowledge and helping others. Over the last few years, he’s provided thoughtful and practical answers to hundreds of questions, making life a little easier for learners and experts alike.
Reputation points are more than just numbers here - they represent the trust and appreciation of the community. Paul’s upcoming milestone is a testament to his consistency, expertise, and willingness to support others.
Please join me in recognizing Paul's contributions and impact on the MATLAB Central community.
Modern engineering requires both robust hardware and powerful simulation tools. MATLAB and Simulink are widely used for data analysis, control design, and embedded system development. At the same time, Kasuo offers a wide range of components—from sensors and connectors to circuit protection devices—that engineers rely on to build real-world systems.
By combining these tools, developers can bridge the gap between simulation and implementation, ensuring their designs are reliable and ready for deployment.
Example Use Case: Sensor Data Acquisition and Processing
  1. Kasuo Hardware Setup
  • Select a Kasuo sensor (e.g., temperature, microphone, or motion sensor).
  • Connect it to a DAQ or microcontroller board for data collection.
  1. Data Acquisition in MATLAB
  • Use MATLAB’s Data Acquisition Toolbox to stream sensor data directly.
  • Example snippet:
s = daq("ni");
addinput(s,
"Dev1", "ai0", "Voltage");
data = read(s, seconds(
5), "OutputFormat", "Matrix");
plot(data);
  1. Signal Processing with Simulink
  • Build a Simulink model to filter noise, detect anomalies, or design control logic.
  • Simulink enables real-time visualization and iterative tuning.
  1. Validation & Protection Simulation
  • Add Kasuo’s circuit protection components (e.g., TVS diodes, surge suppressors) in the physical design.
  • Use Simulink to simulate stress conditions, validating system robustness before hardware testing.
Benefits of the Workflow
  • Faster prototyping with MATLAB & Simulink.
  • Greater reliability by incorporating Kasuo protection devices.
  • Seamless transition from model to hardware implementation.
Conclusion
Kasuo’s electronic components provide the hardware foundation for many embedded and signal processing applications. When combined with MATLAB and Simulink, engineers can design, simulate, and validate systems more efficiently—reducing risks and development time.
Rizwan Khan
Rizwan Khan
Last activity on 12 Sep 2025 at 11:38

With AI agents dev coding on other languages has become so easy.
Im waiting for matlab to build something like warp but for matlab.
I know they have the current ai but with all respect it's rubbish compared to vibe coding tools in others sectors.
Matlab leads AI so it really should be leading this space.
Ceci
Ceci
Last activity on 10 Sep 2025 at 19:08

I designed and stitched this last week! It uses a total of 20 DMC thread colors, and I frequently stitched with two colors at once to create the gradient.
I can not understand why Plot Browser was taken away in latest Matlab... I use Plot Browser all of the time! Having to find and click the particular line I want in a plot with a lot of lines is way less convenient than just selecting it in the Plot Browser. Also, being able to quickly hide/show multiple lines at once with the plot browser was so helpful in a lot of cases. Please bring Plot Browser back!!!! Please reply with support for this if you feel the same as I do!
When you compare MATLAB Plot Gallery with matplotlib gallery, you can see that matplotlib gallery contains a lot of nice graphs which are easy to create in MATLAB but not listed in MATLAB Plot Gallery.
For example, "Data Distribution Plots" section in the MATLAB Plot Gallery includes example for pie function instead of examples for piechart and donutchart functions, etc.

In the latest Graphics and App Building blog article, documentation writer Jasmine Poppick modernized a figure-based bridge analysis app by replacing uicontrol with new UI components and uifigure, resulting in cleaner code, better layouts, and expanded functionality in R2025a.

https://blogs.mathworks.com/graphics-and-apps/2025/08/19/__from-uicontrol-to-ui-components

This article covers the following topics:

Why and when to move from uicontrol and figure to modern UI components and uifigure.

How to replace uicontrol objects with equivalent UI component functions (uicheckbox, uidropdown, uispinner, etc.).

How to update callback code to match new component properties and behaviors.

How to adopt new UI component types (like spinners) to simplify validation and improve usability.

How to configure existing components with modern options (sortable tables, auto-fitting columns, editable data).

How to apply visual styling with uistyle and addStyle to make apps more user-friendly.

How to use uigridlayout to create flexible, adaptive layouts instead of manually managing positions.

The benefits of switching from figure to uifigure for app-building workflows.

A full before-and-after example of modernizing an existing app with incremental, practical updates.

In our large open-source MATLAB Central community, there are many long-term excellent user groups. I really want to know why you have been using MATLAB for a long time, and what are its absolute advantages?
I have been using MATLAB for a long time, and there are several reasons for that:
  1. Fast ramp-up in unfamiliar domains: When I explore an unfamiliar application area or a new topic, MATLAB helps me quickly locate the canonical methods and example workflows. Its comprehensive, professional documentation — along with the related-topic links typically provided at the end of each page — makes it easy to get started intuitively and saves a lot of time that would otherwise be spent hunting for foundational knowledge across the web.
  2. A relatively cutting-edge yet reliable technical path: MATLAB’s many toolboxes evolve with the field. While updates aren’t always absolutely bleeding-edge, they generally offer approaches that balance modernity and proven reliability. This reduces the risk of wasting time on obscure or unstable algorithms and helps me follow a pragmatic, well-tested technical direction.
  3. Strong community and technical support: When I encounter a problem I first post on forums like MATLAB Answers and thoroughly investigate the issue myself. If I find a solution, I publish it to contribute back — which deepens my own understanding and helps others. If I can’t solve it alone, experienced community members often respond within hours. As a last resort, MathWorks’ official support is available and typically conducts an in-depth investigation into specific cases to help resolve the issue.
  4. ......
Also, most individuals have limited time and technical bandwidth, diving deeply into a single, narrow area can be hard to pull back from unless you are committed to that specific direction. For cutting‑edge, highly specialized research it’s often necessary to combine MATLAB with other languages (e.g., Python, C/C++) to go further.
There is a communication regarding "How can I set the text font style of a Data Cursor object interactively on a plot?". But I am not clear on the answer found in this link:
https://www.mathworks.com/matlabcentral/answers/95968-how-can-i-set-the-text-font-style-of-a-data-cursor-object
I do not know how and where to put the recommended commands. Would you please clarfity and give me more details?
Thank you.
Worth the wait: seven new online training courses and one new learning path were released with 25a, covering topics in Controls, Electrification, and Physical Modeling. This release also brings new functionality to support interactions across both MATLAB and Simulink within a single course, beginning with the new Controls courses below:
mlapp being a binary is a pain point for source control. It means that you either have to:
  1. have hooks in your source control system to zip/unzip a mlapp. However, The Mathworks have informed users not to rely on this as the mlapp format may change.
  2. do all your source control in MATLAB. This is non standard behaviour. Source code and source control should be independent of each other. Web front-ends to source control systems, 3rd party source control apps, CI/CD systems and much more are extremely limited in what they can do with mlapps.
I wish an mlapp could just be a directory full of the required text/other files.
Requested to post this here from reddit.
There is no call to rescan audio devices in audioPlayerRecorder, even though PortAudio has such a call. I have a measurement environment that takes a long time to initialise. If I forget to plug in my audio device, I have to do it all over again...
This just came out. @Michelle Hirsch spoke to Jousef Murad and answer his questions about the big change in the desktop in R2025a and explained what was going on behind the scene. Enjoy!
The Big MATLAB Update: Dark Mode, Cloud & the Future of Engineering - Michelle Hirsch
Share your ideas, suggestions, and wishlists for improving MathWorks products. What would make the software absolutely perfect for you? Discuss your idea(s) with other community users.

Guidelines & Tips

We encourage all ideas, big or small! To help everyone understand and discuss your suggestion, please include as much detail as possible in your post:
  • Product or Feature: Clearly state which product (e.g., MATLAB, Simulink, a toolbox, etc.) or specific feature your idea relates to.
  • The Problem or Opportunity: Briefly describe what challenge you’re facing or what opportunity you see for improvement.
  • Your Idea: Explain your suggestion in detail. What would you like to see added, changed, or improved? How would it help you and other users?
  • Examples or Use Cases (optional): If possible, include an example, scenario, or workflow to illustrate your idea.
  • Related Posts (optional): If you’ve seen similar ideas or discussions, feel free to link to them for context.

Ready to share your idea?

Click here and then "Start a Discussion”, and let the community know how MATLAB could be even better for you!
Thank you for your contributions and for helping make MATLAB Central a vibrant place for sharing and improving ideas.
These got released last week and the process for using them on your local machine with MATLAB is very similar to how you use the local deepseek models as I demonstrated in my February blog post How to run local DeepSeek models and use them with MATLAB » The MATLAB Blog - MATLAB & Simulink
You need Ollama and the LLMs with MATLAB package installed (Details on how to do this in the blog post above). Then you run the following in your operating systems' command line
ollama pull gpt-oss:20b
Over to MATLAB and set up a chat session
>> chat = ollamaChat("gpt-oss:20b")
chat =
ollamaChat with properties:
ModelName: "gpt-oss:20b"
Endpoint: "127.0.0.1:11434"
TopK: Inf
MinP: 0
TailFreeSamplingZ: 1
Temperature: 1
TopP: 1
StopSequences: [0×0 string]
TimeOut: 120
SystemPrompt: []
ResponseFormat: "text"
FunctionNames: []
txt = generate(chat,"Who are you?")
txt =
"I’m ChatGPT – a conversational AI developed by OpenAI. My core is the GPT‑4 language model, which has been trained on a massive mix of text from books, websites, articles and other sources to understand and generate human‑like language. I don’t have feelings, consciousness, or a personal identity; I’m a tool that can help answer questions, brainstorm ideas, explain concepts, draft text, and more. My goal is to understand the context you give me and respond in a helpful, accurate and safe way. If there’s something specific you’d like to know or do, just let me know!"
This is the smaller of the two, new open models and it is bringing my aging desktop to its knees. My GPU is too small to do the work so I think everything is happening on the CPU and its slooooow. Will try on my Mac next
Let me know if you try this out!
Long before I joined MathWorks, I was a member of the academic Research Software Engineering (RSE) community where part of my mission was to introduce basic software engineering concepts to the research community. Things like version control, testing and even simply writing code instead of using only pointy-clicky GUIs before copying and pasting the results plot into a word document. I've seen things..........*shudders*
The RSE movement is still going very strong and I am elated that MathWorks is increasingly interacting with it. One example of such interaction is a video tutorial contributed by my colleauge @Mihaela Jarema to a comminity seminar series called 'A summer of Testing' It's linked to below
The video assumes you've never run a test before and gently guides you through the principles. Along the way you'll learn about some of MATLAB's superb testing capabilities. Things like
  • Unit testing Framework
  • Test Browser App
  • Code Coverage
  • Test Fixtures (Setup and teardown)
  • Test driven devellopment
  • Function argument validation
  • CI/CD using GitHub actions
Go check out out.