Main Content

Results for

Harel
Harel
Last activity on 25 Aug 2025

Hi,
I have some problem, I want to upload my data that sample rate at 500HZ, every sevral seconds.
My data include 12 bytes, and it measure 500HZ, for example for 15 seconds I coolect 15*500*12 = 84KB.
Can I upload this data to ThingSpeak? It is possible to use with Free acount (I am student and this is my project)
How can help me..
Ceci
Ceci
Last activity on 10 Sep 2025 at 19:08

I designed and stitched this last week! It uses a total of 20 DMC thread colors, and I frequently stitched with two colors at once to create the gradient.
I can not understand why Plot Browser was taken away in latest Matlab... I use Plot Browser all of the time! Having to find and click the particular line I want in a plot with a lot of lines is way less convenient than just selecting it in the Plot Browser. Also, being able to quickly hide/show multiple lines at once with the plot browser was so helpful in a lot of cases. Please bring Plot Browser back!!!! Please reply with support for this if you feel the same as I do!

In the latest Graphics and App Building blog article, documentation writer Jasmine Poppick modernized a figure-based bridge analysis app by replacing uicontrol with new UI components and uifigure, resulting in cleaner code, better layouts, and expanded functionality in R2025a.

https://blogs.mathworks.com/graphics-and-apps/2025/08/19/__from-uicontrol-to-ui-components

This article covers the following topics:

Why and when to move from uicontrol and figure to modern UI components and uifigure.

How to replace uicontrol objects with equivalent UI component functions (uicheckbox, uidropdown, uispinner, etc.).

How to update callback code to match new component properties and behaviors.

How to adopt new UI component types (like spinners) to simplify validation and improve usability.

How to configure existing components with modern options (sortable tables, auto-fitting columns, editable data).

How to apply visual styling with uistyle and addStyle to make apps more user-friendly.

How to use uigridlayout to create flexible, adaptive layouts instead of manually managing positions.

The benefits of switching from figure to uifigure for app-building workflows.

A full before-and-after example of modernizing an existing app with incremental, practical updates.

In our large open-source MATLAB Central community, there are many long-term excellent user groups. I really want to know why you have been using MATLAB for a long time, and what are its absolute advantages?
I have been using MATLAB for a long time, and there are several reasons for that:
  1. Fast ramp-up in unfamiliar domains: When I explore an unfamiliar application area or a new topic, MATLAB helps me quickly locate the canonical methods and example workflows. Its comprehensive, professional documentation — along with the related-topic links typically provided at the end of each page — makes it easy to get started intuitively and saves a lot of time that would otherwise be spent hunting for foundational knowledge across the web.
  2. A relatively cutting-edge yet reliable technical path: MATLAB’s many toolboxes evolve with the field. While updates aren’t always absolutely bleeding-edge, they generally offer approaches that balance modernity and proven reliability. This reduces the risk of wasting time on obscure or unstable algorithms and helps me follow a pragmatic, well-tested technical direction.
  3. Strong community and technical support: When I encounter a problem I first post on forums like MATLAB Answers and thoroughly investigate the issue myself. If I find a solution, I publish it to contribute back — which deepens my own understanding and helps others. If I can’t solve it alone, experienced community members often respond within hours. As a last resort, MathWorks’ official support is available and typically conducts an in-depth investigation into specific cases to help resolve the issue.
  4. ......
Also, most individuals have limited time and technical bandwidth, diving deeply into a single, narrow area can be hard to pull back from unless you are committed to that specific direction. For cutting‑edge, highly specialized research it’s often necessary to combine MATLAB with other languages (e.g., Python, C/C++) to go further.
There is a communication regarding "How can I set the text font style of a Data Cursor object interactively on a plot?". But I am not clear on the answer found in this link:
https://www.mathworks.com/matlabcentral/answers/95968-how-can-i-set-the-text-font-style-of-a-data-cursor-object
I do not know how and where to put the recommended commands. Would you please clarfity and give me more details?
Thank you.
Worth the wait: seven new online training courses and one new learning path were released with 25a, covering topics in Controls, Electrification, and Physical Modeling. This release also brings new functionality to support interactions across both MATLAB and Simulink within a single course, beginning with the new Controls courses below:
Did you know that function double with string vector input significantly outperforms str2double with the same input:
x = rand(1,50000);
t = string(x);
tic; str2double(t); toc
Elapsed time is 0.276966 seconds.
tic; I1 = str2double(t); toc
Elapsed time is 0.244074 seconds.
tic; I2 = double(t); toc
Elapsed time is 0.002907 seconds.
isequal(I1,I2)
ans = logical
1
Recently I needed to parse numbers from text. I automatically tried to use str2double. However, profiling revealed that str2double was the main bottleneck in my code. Than I realized that there is a new note (since R2024a) in the documentation of str2double:
"Calling string and then double is recommended over str2double because it provides greater flexibility and allows vectorization. For additional information, see Alternative Functionality."
This just came out. @Michelle Hirsch spoke to Jousef Murad and answer his questions about the big change in the desktop in R2025a and explained what was going on behind the scene. Enjoy!
The Big MATLAB Update: Dark Mode, Cloud & the Future of Engineering - Michelle Hirsch
Independent researcher: Nguyễn Khánh Tùng
ORCID: 0009-0002-9877-4137
Email: traiphieu.com@gmail.com
The NKTg Law (Law of Variable Inertia) not only holds value in physics but also opens up wide possibilities for applications in programming and simulation. The remarkable point here is that the same law, the same formula, can be implemented across a wide range of different programming languages.
In the content below, you will find a collection of 150 code snippets, each corresponding to one of the world’s leading programming languages:
Python, C++, Java, C, C#, JavaScript, TypeScript, PHP, Ruby, Swift, Go, Rust, Kotlin, Dart, Scala, R, MATLAB, Julia, Haskell, Perl, Shell, SQL, Visual Basic, Assembly, Ada, Fortran, Prolog, Scheme, Lisp, Scratch, Smalltalk, Pascal, Groovy, PowerShell, Apex, ABAP, ActionScript, Algol, Alice, AmbientTalk, AngelScript, APL, Arc, Arduino, ASP.NET, AssemblyScript, ATS, AWK, Ballerina, BASIC, VHDL, Verilog, Assembly, AutoHotkey, AutoLISP, AWK, Bash, bc, Boo, Clojure, COBOL, Common Lisp, Crystal, D, Delphi/Object Pascal, Dylan, Eiffel, Elixir, Elm, Emacs Lisp, Erlang, F#, Factor, Falcon, Fantom, Felix, Forth, Fortress, Frink, Gambas, GAMS, GAP, Genie, GLSL, Hack, Haxe, HDL, HLSL, Hope, HTML, HyperTalk, Icon, IDL, Inform, Io, Ioke, J, J#, JScript, JavaFX Script, Io, Ioke, J, J#, JScript, Julia, Kotlin, LabVIEW, Ladder Logic, Lasso, Lava, Lisp, LiveCode, Logo, Lua, M4, Magik, Maple, Mathematica, MATLAB, Mercury, Modula-2, Modula-3, MoonScript, Nemerle, NetLogo, Nim, Nix, Objective-C, Objective-J, OCaml, OpenCL, OpenEdge ABL, Oz, PL/I, PL/SQL, PostScript, Promela, Pure, Q#, Racket, RAPID, REBOL, Red, Rexx, Ring, Solidity, SPARK, SPSS, Squirre
All the code snippets illustrate how to calculate the fundamental quantities of The NKTg Law on Varying Inertia:
The movement tendency of an object in space depends on the relationship between its position, velocity, and mass.
NKTg = f(x, v, m)
In which:
  • x is the position or displacement of the object relative to the reference point.
  • v is the velocity.
  • m is the mass.
The movement tendency of the object is determined by the following basic product quantities:
NKTg₁ = x × p
NKTg₂ = (dm/dt) × p
In which:
  • p is the linear momentum, calculated by p = m × v.
  • dm/dt is the rate of mass change over time.
  • NKTg₁ is the quantity representing the product of position and momentum.
  • NKTg₂ is the quantity representing the product of mass variation and momentum.
  • The unit of measurement is NKTm, representing a unit of varying inertia.
The sign and value of the two quantities NKTg₁ and NKTg₂ determine the movement tendency:
  • If NKTg₁ is positive, the object tends to move away from the stable state.
  • If NKTg₁ is negative, the object tends to move toward the stable state.
  • If NKTg₂ is positive, the mass variation has a supporting effect on the movement.
  • If NKTg₂ is negative, the mass variation has a resisting effect on the movement.
The stable state in this law is understood as the state in which the position (x), velocity (v), and mass (m) of the object interact with each other to maintain the movement structure, helping the object avoid losing control and preserving its inherent movement pattern.
# Python:
versatile, easy to learn, strong for AI and data science
x, v, m, dm_dt = 2.0, 3.0, 5.0, 0.1
p = m * v
NKTg1 = x * p
NKTg2 = dm_dt * p
print(f"p={p}, NKTg1={NKTg1}, NKTg2={NKTg2}")
Java
// Java: enterprise applications, Android
public class NKTgLaw {
public static void main(String[] args) {
double x=2, v=3, m=5, dm_dt=0.1;
double p = m*v, NKTg1 = x*p, NKTg2 = dm_dt*p;
System.out.printf(
"p=%.2f NKTg1=%.2f NKTg2=%.2f%n", p, NKTg1, NKTg2);
}
}
Implementing the same law across 150 programming ecosystems demonstrates its universality and flexibility, while also confirming that any language—whether general-purpose and popular, or specialized and classical—can apply the NKTg Law to simulate, analyze, and handle practical problems.
Full list of 150 programming languages (complete) — due to post size limits I placed the complete list on an external page for easy viewing and download:
You can refer to the following four related articles to gain a deeper understanding of the NKTg Law and its applications
These got released last week and the process for using them on your local machine with MATLAB is very similar to how you use the local deepseek models as I demonstrated in my February blog post How to run local DeepSeek models and use them with MATLAB » The MATLAB Blog - MATLAB & Simulink
You need Ollama and the LLMs with MATLAB package installed (Details on how to do this in the blog post above). Then you run the following in your operating systems' command line
ollama pull gpt-oss:20b
Over to MATLAB and set up a chat session
>> chat = ollamaChat("gpt-oss:20b")
chat =
ollamaChat with properties:
ModelName: "gpt-oss:20b"
Endpoint: "127.0.0.1:11434"
TopK: Inf
MinP: 0
TailFreeSamplingZ: 1
Temperature: 1
TopP: 1
StopSequences: [0×0 string]
TimeOut: 120
SystemPrompt: []
ResponseFormat: "text"
FunctionNames: []
txt = generate(chat,"Who are you?")
txt =
"I’m ChatGPT – a conversational AI developed by OpenAI. My core is the GPT‑4 language model, which has been trained on a massive mix of text from books, websites, articles and other sources to understand and generate human‑like language. I don’t have feelings, consciousness, or a personal identity; I’m a tool that can help answer questions, brainstorm ideas, explain concepts, draft text, and more. My goal is to understand the context you give me and respond in a helpful, accurate and safe way. If there’s something specific you’d like to know or do, just let me know!"
This is the smaller of the two, new open models and it is bringing my aging desktop to its knees. My GPU is too small to do the work so I think everything is happening on the CPU and its slooooow. Will try on my Mac next
Let me know if you try this out!
Long before I joined MathWorks, I was a member of the academic Research Software Engineering (RSE) community where part of my mission was to introduce basic software engineering concepts to the research community. Things like version control, testing and even simply writing code instead of using only pointy-clicky GUIs before copying and pasting the results plot into a word document. I've seen things..........*shudders*
The RSE movement is still going very strong and I am elated that MathWorks is increasingly interacting with it. One example of such interaction is a video tutorial contributed by my colleauge @Mihaela Jarema to a comminity seminar series called 'A summer of Testing' It's linked to below
The video assumes you've never run a test before and gently guides you through the principles. Along the way you'll learn about some of MATLAB's superb testing capabilities. Things like
  • Unit testing Framework
  • Test Browser App
  • Code Coverage
  • Test Fixtures (Setup and teardown)
  • Test driven devellopment
  • Function argument validation
  • CI/CD using GitHub actions
Go check out out.
Is there a hardware support package available for the MP series?
I just wanted here to share a link to some .gif animations I created over the years with Matlab :-)
I think gif animations are great supports for scientific diffusion.
Just check my file exchange to find -and why not custom / improve- some of them ;-)
Hello to all!
I would like to share with the Matlab and Simulink community this video about Neural Networks in Simulink.
This is a series of videos that use a multilayer perceptron implemented in Simulink as a case study. Why Simulink? Because it's a visual and intuitive modeling tool, you can see the forward propagation of this network and better understand the flow. The objective of this series is to show the implementation using Simulink for both simulation and Arduino, as well as its training using Matlab and Matlab with Deep Learning Toolbox, and a video of training with Python.
The video is in Spanish, but the Simulink model is available in English for the entire community; subtitles are also available.
The files are located in the first comment of each video. We hope you find it interesting and enjoyable. Best regards!
Here I share the link to the first video.
In many parts of Africa, particularly in technical universities and engineering institutes, physical laboratories are scarce or poorly equipped. This reality deeply limits the hands-on experience students deserve, especially in fields like control systems, signal processing, power electronics, and fluid mechanics.
But MATLAB and Simulink can fill part of this gap.
As an educator and researcher, I’ve made it my mission to promote MATLAB as a didactic simulation environment that brings real-world experimentation into the virtual space—affordable, accessible, and scalable. Whether simulating dynamic systems, visualizing electromagnetic fields, or tuning PID controllers interactively, students can develop strong intuition without needing costly hardware.
🔧 I’ve used MATLAB to teach:
  • Power systems and control theory without needing real generators or oscilloscopes,
  • Hydrology and environmental modeling without field sensors,
  • Robotics and AI concepts even where no robot is available.
🌍 This is more than a tool for me. It’s a bridge between educational ambition and limited infrastructure.
I dream of creating MATLAB-based virtual laboratories across African institutions. And I know I’m not alone.
Is anyone else here working on similar goals in under-resourced regions? Let’s connect and make it real.
— Patrick K.N.
As someone who grew up programming in C#, I often find myself wishing for a tighter, more native integration between MATLAB and C#.
There’s so much I dream of doing—leveraging the power of Simulink models or MATLAB’s advanced numerical libraries inside my .NET desktop or web applications. Of course, I know there are some workarounds: COM automation, MATLAB Engine API for .NET, or using MATLAB Compiler SDK… but let’s be honest: it’s not quite as seamless as I’d hope.
I imagine a world where:
  • I could directly call MATLAB functions from C# as if they were .NET assemblies, without middleware.
  • Simulink blocks could generate portable C# code (not just C/C++).
  • MATLAB UI components could be embedded in WPF/WinForms apps natively.
Until then... we make do with what we have. But the vision remains.
Anyone else here trying to bridge MATLAB and C# in their workflow? I’d love to hear your experiences or ideas!
— Patrick K.N.