Main Content

score

Compute credit scores for given data

Description

Scores = score(sc) computes the credit scores for the creditscorecard object’s training data. This data can be a “training” or a “live” dataset. If the data input argument is not explicitly provided, the score function determines scores for the existing creditscorecard object’s data.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be used to control the rounding of points and scores, and whether the base points are reported separately or spread across predictors. Missing data translates into NaN values for the corresponding points, and therefore for the total score. Use formatpoints to modify the score behavior for rows with missing data.

example

Scores = score(sc, data) computes the credit scores for the given input data. This data can be a “training” or a “live” dataset.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be used to control the rounding of points and scores, and whether the base points are reported separately or spread across predictors. Missing data translates into NaN values for the corresponding points, and therefore for the total score. Use formatpoints to modify the score behavior for rows with missing data.

example

[Scores,Points] = score(sc) computes the credit scores and points for the given data. If the data input argument is not explicitly provided, the score function determines scores for the existing creditscorecard object’s data.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be used to control the rounding of points and scores, and whether the base points are reported separately or spread across predictors. Missing data translates into NaN values for the corresponding points, and therefore for the total score. Use formatpoints to modify the score behavior for rows with missing data.

example

[Scores,Points] = score(sc,data) computes the credit scores and points for the given input data. This data can be a “training” or a “live” dataset.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be used to control the rounding of points and scores, and whether the base points are reported separately or spread across predictors. Missing data translates into NaN values for the corresponding points, and therefore for the total score. Use formatpoints to modify the score behavior for rows with missing data.

example

Examples

collapse all

This example shows how to use score to obtain scores for the training data.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that 'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792


1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Score training data using the score function without an optional input for data. By default, it returns unscaled scores. For brevity, only the first ten scores are displayed.

Scores = score(sc);
disp(Scores(1:10))
    1.0968
    1.4646
    0.7662
    1.5779
    1.4535
    1.8944
   -0.0872
    0.9207
    1.0399
    0.8252

Scale scores and display both points and scores for each individual in the training data (for brevity, only the first ten rows are displayed). For other scaling methods, and other options for formatting points and scores, use the formatpoints function.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);
[Scores,Points] = score(sc);
disp(Scores(1:10))
  602.0394
  648.1988
  560.5569
  662.4189
  646.8109
  702.1398
  453.4572
  579.9475
  594.9064
  567.9533
disp(Points(1:10,:))
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    95.256      62.421       56.765        121.18      116.05     86.224       64.15  
    126.46      82.276       105.81        121.18      62.107     86.224       64.15  
    93.256      62.421       105.81        76.585      116.05     42.287       64.15  
    95.256      82.276       105.81        121.18      60.719     86.224      110.96  
    126.46      82.276       105.81        121.18      60.719     86.224       64.15  
    126.46      82.276       105.81        121.18      116.05     86.224       64.15  
    48.727      82.276       56.765        53.208      62.107     86.224       64.15  
    95.256      113.58       105.81        121.18      62.107     42.287      39.729  
    95.256      62.421       56.765        121.18      62.107     86.224      110.96  
    95.256      82.276       56.765        121.18      62.107     86.224       64.15  

This example describes the assignment of points for missing data when the 'BinMissingData' option is set to true.

  • Predictors that have missing data in the training set have an explicit bin for <missing> with corresponding points in the final scorecard. These points are computed from the Weight-of-Evidence (WOE) value for the <missing> bin and the logistic model coefficients. For scoring purposes, these points are assigned to missing values and to out-of-range values.

  • Predictors with no missing data in the training set have no <missing> bin, therefore no WOE can be estimated from the training data. By default, the points for missing and out-of-range values are set to NaN, and this leads to a score of NaN when running score. For predictors that have no explicit <missing> bin, use the name-value argument 'Missing' in formatpoints to indicate how missing data should be treated for scoring purposes.

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing with missing values.

load CreditCardData.mat 
head(dataMissing,5)
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   
fprintf('Number of rows: %d\n',height(dataMissing))
Number of rows: 1200
fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))
Number of missing values CustAge: 30
fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))
Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {'CustID'  'CustAge'  'TmAtAddress'  'ResStatus'  'EmpStatus'  'CustIncome'  'TmWBank'  'OtherCC'  'AMBalance'  'UtilRate'  'status'}
        NumericPredictors: {'CustAge'  'TmAtAddress'  'CustIncome'  'TmWBank'  'AMBalance'  'UtilRate'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {'CustAge'  'TmAtAddress'  'ResStatus'  'EmpStatus'  'CustIncome'  'TmWBank'  'OtherCC'  'AMBalance'  'UtilRate'}
                     Data: [1200x11 table]

Set a minimum value of zero for CustAge and CustIncome. With this, any negative age or income information becomes invalid or "out-of-range". For scoring purposes, out-of-range values are given the same points as missing values.

sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);

Display and plot bin information for numeric data for 'CustAge' that includes missing data in a separate bin labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)
         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[0,33)'   }     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112
plotbins(sc,'CustAge')

Figure contains an axes object. The axes object with title CustAge, ylabel WOE contains 3 objects of type bar, line. These objects represent Good, Bad.

Display and plot bin information for categorical data for 'ResStatus' that includes missing data in a separate bin labelled <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)
         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627
plotbins(sc,'ResStatus')

Figure contains an axes object. The axes object with title ResStatus, ylabel WOE contains 3 objects of type bar, line. These objects represent Good, Bad.

For the 'CustAge' and 'ResStatus' predictors, there is missing data (NaNs and <undefined>) in the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469 respectively for missing data in these predictors, as shown above.

For EmpStatus and CustIncome there is no explicit bin for missing values because the training data has no missing values for these predictors.

bi = bininfo(sc,'EmpStatus');
disp(bi)
        Bin         Good    Bad     Odds       WOE       InfoValue
    ____________    ____    ___    ______    ________    _________

    {'Unknown' }    396     239    1.6569    -0.19947    0.021715 
    {'Employed'}    407     158    2.5759      0.2418    0.026323 
    {'Totals'  }    803     397    2.0227         NaN    0.048038 
bi = bininfo(sc,'CustIncome');
disp(bi)
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[0,29000)'    }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel internally transforms all the predictor variables into WOE values, using the bins found with the automatic binning process. fitmodel then fits a logistic regression model using a stepwise method (by default). For predictors that have missing data, there is an explicit <missing> bin, with a corresponding WOE value computed from the data. When using fitmodel, the corresponding WOE value for the <missing> bin is applied when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775


1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using the 'PointsOddsAndPDO' argument of formatpoints. Suppose that you want a score of 500 points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50 points (so that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)
PointsInfo=38×3 table
     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[0,33)'    }    54.062
    {'CustAge'  }    {'[33,37)'   }    56.282
    {'CustAge'  }    {'[37,40)'   }    60.012
    {'CustAge'  }    {'[40,46)'   }    69.636
    {'CustAge'  }    {'[46,48)'   }    77.912
    {'CustAge'  }    {'[48,51)'   }     78.86
    {'CustAge'  }    {'[51,58)'   }     80.83
    {'CustAge'  }    {'[58,Inf]'  }     96.76
    {'CustAge'  }    {'<missing>' }    64.984
    {'ResStatus'}    {'Tenant'    }    62.138
    {'ResStatus'}    {'Home Owner'}    73.248
    {'ResStatus'}    {'Other'     }    90.828
    {'ResStatus'}    {'<missing>' }    74.125
    {'EmpStatus'}    {'Unknown'   }    58.807
    {'EmpStatus'}    {'Employed'  }    86.937
    {'EmpStatus'}    {'<missing>' }       NaN
      ⋮

Notice that points for the <missing> bin for CustAge and ResStatus are explicitly shown (as 64.9836 and 74.1250, respectively). These points are computed from the WOE value for the <missing> bin, and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin. By default the points are set to NaN for missing data and they lead to a score of NaN when running score. For predictors that have no explicit <missing> bin, use the name-value argument 'Missing' in formatpoints to indicate how missing data should be treated for scoring purposes.

For the purpose of illustration, take a few rows from the original data as test data and introduce some missing data. Also introduce some invalid, or out-of-range values. For numeric data, values below the minimum (or above the maximum) allowed are considered invalid, such as a negative value for age (recall 'MinValue' was earlier set to 0 for CustAge and CustIncome). For categorical data, invalid values are categories not explicitly included in the scorecard, for example, a residential status not previously mapped to scorecard categories, such as "House", or a meaningless string such as "abc123".

tdata = dataMissing(11:18,mdl.PredictorNames); % Keep only the predictors retained in the model
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = missing;
tdata.EmpStatus(3) = missing;
tdata.CustIncome(4) = NaN;
% Set some invalid values
tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata)
    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance
    _______    ___________    ___________    __________    _______    _______    _________

      NaN      Tenant         Unknown          34000         44         Yes        119.8  
       48      <undefined>    Unknown          44000         14         Yes       403.62  
       65      Home Owner     <undefined>      48000          6         No        111.88  
       44      Other          Unknown            NaN         35         No        436.41  
     -100      Other          Employed         46000         16         Yes       162.21  
       33      House          Employed         36000         36         Yes       845.02  
       39      Tenant         Freelancer       34000         40         Yes       756.26  
       24      Home Owner     Employed            -1         19         Yes       449.61  

Score the new data and see how points are assigned for missing CustAge and ResStatus, because we have an explicit bin with points for <missing>. However, for EmpStatus and CustIncome the score function sets the points to NaN.

[Scores,Points] = score(sc,tdata);
disp(Scores)
  481.2231
  520.8353
       NaN
       NaN
  551.7922
  487.9588
       NaN
       NaN
disp(Points)
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248          NaN        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807           NaN      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138          NaN        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937           NaN      61.061     75.622      89.922  

Use the name-value argument 'Missing' in formatpoints to choose how to assign points to missing values for predictors that do not have an explicit <missing> bin. In this example, use the 'MinPoints' option for the 'Missing' argument. The minimum points for EmpStatus in the scorecard displayed above are 58.8072, and for CustIncome the minimum points are 29.3753.

sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,tdata);
disp(Scores)
  481.2231
  520.8353
  517.7532
  451.3405
  551.7922
  487.9588
  449.3577
  470.2267
disp(Points)
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248       58.807        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807        29.375      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138       58.807        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937        29.375      61.061     75.622      89.922  

This example shows how to use score to obtain scores for a new dataset (for example, a validation or a test dataset) using the optional 'data' input in the score function.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that 'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792


1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

For the purpose of illustration, suppose that a few rows from the original data are our "new" data. Use the optional data input argument in the score function to obtain the scores for the newdata.

newdata = data(10:20,:);
Scores = score(sc,newdata)
Scores = 11×1

    0.8252
    0.6553
    1.2443
    0.9478
    0.5690
    1.6192
    0.4899
    0.3824
    0.2945
    1.4401
      ⋮

Input Arguments

collapse all

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a creditscorecard object.

(Optional) Dataset to be scored, specified as a MATLAB® table where each row corresponds to individual observations. The data must contain columns for each of the predictors in the creditscorecard object.

Output Arguments

collapse all

Scores for each observation, returned as a vector.

Points per predictor for each observation, returned as a table.

Algorithms

The score of an individual i is given by the formula

Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))

where bj is the coefficient of the j-th variable in the model, and WOEj(i) is the Weight of Evidence (WOE) value for the i-th individual corresponding to the j-th model variable. Shift and Slope are scaling constants that can be controlled with formatpoints.

If the data for individual i is in the i-th row of a given dataset, to compute a score, the data(i,j) is binned using existing binning maps, and converted into a corresponding Weight of Evidence value WOEj(i). Using the model coefficients, the unscaled score is computed as

 s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).

For simplicity, assume in the description above that the j-th variable in the model is the j-th column in the data input, although, in general, the order of variables in a given dataset does not have to match the order of variables in the model, and the dataset could have additional variables that are not used in the model.

The formatting options can be controlled using formatpoints.

References

[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

Version History

Introduced in R2014b