Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Constant velocity state update

`updatedstate = constvel(state)`

`updatedstate = constvel(state,dt) `

returns the updated state, `updatedstate`

= constvel(`state`

)`state`

, of a constant-velocity Kalman
filter motion model after a one-second time step.

specifies the time step, `updatedstate`

= constvel(`state`

,`dt`

) `dt`

.

For a two-dimensional constant-velocity process, the state transition matrix after a time
step, *T*, is block diagonal as shown here.

$$\left[\begin{array}{c}{x}_{k+1}\\ {v}_{x,k+1}\\ {y}_{k+1}\\ {v}_{y,k+1}\end{array}\right]=\left[\begin{array}{cccc}1& T& 0& 0\\ 0& 1& 0& 0\\ 0& 0& 1& T\\ 0& 0& 0& 1\end{array}\right]\left[\begin{array}{c}{x}_{k}\\ v{x}_{k}\\ {y}_{k}\\ v{y}_{k}\end{array}\right]$$

The block for each spatial dimension is:

$$\left[\begin{array}{cc}1& T\\ 0& 1\end{array}\right]$$

For each additional spatial dimension, add an identical block.

`cameas`

|`cameasjac`

|`constacc`

|`constaccjac`

|`constturn`

|`constturnjac`

|`constveljac`

|`ctmeas`

|`ctmeasjac`

|`cvmeas`

|`cvmeasjac`