Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Doppler estimation

The `phased.DopplerEstimator`

System
object™ estimates
Doppler frequencies of targets. Input to the estimator consists of
detection locations output from a detector, and a range-Doppler response
data cube. When detections are clustered, the Doppler frequencies
are computed using cluster information. Clustering associates multiple
detections into one extended detection.

To compute Doppler values for detections:

Define and set up your Doppler estimator using the Construction procedure that follows.

Call the

`step`

method to compute the Doppler of detections, using the properties you specify for the`phased.DopplerEstimator`

System object.

Instead of using the `step`

method to perform
the operation defined by the System
object, you can call the object
with arguments, as if it were a function. For example, ```
y
= step(obj,x)
```

and `y = obj(x)`

perform
equivalent operations.

`estimator = phased.DopplerEstimator`

creates
a Doppler estimator System
object, `estimator`

.

`estimator = phased.DopplerEstimator(`

creates
a System
object, `Name`

,`Value`

)`estimator`

, with each specified
property `Name`

set to the specified `Value`

.
You can specify additional name and value pair arguments in any order
as (`Name1,Value1`

,...,`NameN,ValueN`

).

step | Estimate target Doppler |

Common to All System Objects | |
---|---|

`release` | Allow System object property value changes |

[1] Richards, M. *Fundamentals of Radar Signal
Processing.* 2nd ed. McGraw-Hill Professional Engineering,
2014.

[2] Richards, M., J. Scheer, and W. Holm, * Principles
of Modern Radar: Basic Principles*. SciTech Publishing,
2010.