posemaskrcnn
Description
The posemaskrcnn
object performs pose estimation of objects in an
image using a pretrained Pose Mask R-CNN network, a region-based convolutional neural network
designed for six degrees-of-freedom (6-DoF) pose estimation.
Note
This functionality requires Deep Learning Toolbox™ and the Computer Vision Toolbox™ Model for Pose Mask R-CNN 6-DoF Object Pose Estimation. You can install the Computer Vision Toolbox Model for Pose Mask R-CNN 6-DoF Object Pose Estimation from Add-On Explorer. For more information about installing add-ons, see Get and Manage Add-Ons.
Creation
Syntax
Description
creates a pretrained Pose Mask R-CNN pose estimation network net
= posemaskrcnn(pretrainedNet
)net
by
using the specified pretrained Pose Mask R-CNN deep learning network.
creates a pretrained Pose Mask R-CNN pose estimation network, and configures it to perform
transfer learning using a set of object classes specified by the net
= posemaskrcnn(pretrainedNet
,classNames
)classNames
argument. For optimal results, train the network on new training data before performing
pose estimation.
creates a pretrained Pose Mask R-CNN network, and configures it to perform transfer
learning using a set of object classes and anchor boxes specified by the net
= posemaskrcnn(pretrainedNet
,classNames
,anchorBoxes
)classNames
and anchorBoxes
arguments, respectively. For optimal results, train the network on new training data
before performing pose estimation.
specifies options using name-value arguments to specify ROI pooling sizes in addition to
any combination of input arguments from previous syntaxes. You can also use name-value
arguments to set the net
= posemaskrcnn(___,Name=Value
)ModelName
and ImageInputSize
properties.
For example, PoolSize=[11 11]
specifies the ROI pooling size for
the detection head as 11-by-11 pixels.
Input Arguments
Properties
Object Functions
predictPose | Estimate object pose using Pose Mask R-CNN deep learning network |
Examples
References
[1] Xiang, Yu, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. "PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes." ArXiv abs/1711.00199 (2017). https://api.semanticscholar.org/CorpusID:3440950.
[2] Jiang, Xiaoke, Donghai Li, Hao Chen, Ye Zheng, Rui Zhao, and Liwei Wu. “Uni6D: A Unified CNN Framework without Projection Breakdown for 6D Pose Estimation.” In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11164–74. New Orleans, LA, USA: IEEE, 2022. doi:10.1109/CVPR52688.2022.01089.
Version History
Introduced in R2024a