How to plot the error of two numerical methods on the same graph?
5 views (last 30 days)
Show older comments
I'm trying to plot the error of two methods, but I got the following error
Index exceeds the number of array elements (3)
Also, How can I plot the error of the two methods on the same graph?
function xnew = newtonmethod(f,df,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
%% Newton code
disp('No Itr Solution Error ')
Error=[];
for i=1:n
xnew=x0-(f(x0)/df(x0));
err=abs(xnew-x0);
fprintf('%3i %11.4f %11.4f %11.4f\n',i,x0,err);
if (err<tol)
break
end
x0=xnew;
Error=[Error;err];
end
%% Graph
plot(1:i,Error(1:i),'r-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2nd method
function xnewh = Hmethod(f,df,ddf,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
ddf=@(x) -4.5*sin(x);
x0=1;
tol=0.0001;
n=50;
%% code
disp('No Itr Solution Errorh')
Errorh=[];
for i=1:n
xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
errh=abs(xnewh-x0);
fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
if (errh<tol)
break
end
x0=xnewh;
Errorh=[Errorh;errh];
end
%% Graph
plot(1:i,Errorh(1:i),'b-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%
0 Comments
Accepted Answer
Star Strider
on 16 Feb 2024
I cannot run your code because I do not have arguments for the functions. (I tweaked them to make them a bit more efficient.)
Plotting both results in the same axes is relativbely straightforward.
Example (using different functions) —
figure
plot1
hold on
plot2
hold off
grid
function plot1
plot((0:0.1:5), sin((0:0.1:5)*pi))
end
function plot2
plot((0:0.1:5), cos((0:0.1:5)*pi))
end
%
%
% function xnew = newtonmethod(f,df,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% x0=1;
% tol=0.0001;
% n=50;
% %% Newton code
% disp('No Itr Solution Error ')
% Error=zeros(1,n);
% for i=1:n
% xnew=x0-(f(x0)/df(x0));
% err=abs(xnew-x0);
% fprintf('%3i %11.4f %11.4f %11.4f\n',i,x0,err);
% if (err<tol)
% break
% end
% x0=xnew;
% Error(i)=err;
% end
% %% Graph
%
%
% plot(1:n,Error,'r-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% 2nd method
% function xnewh = Hmethod(f,df,ddf,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% ddf=@(x) -4.5*sin(x);
%
% x0=1;
% tol=0.0001;
% n=50;
% %% code
% disp('No Itr Solution Errorh')
%
% Errorh=zeros(1,n);
% for i=1:n
%
% xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
% errh=abs(xnewh-x0);
%
% fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
% if (errh<tol)
% break
% end
%
% x0=xnewh;
% Errorh(i)=errh;
% end
% %% Graph
%
%
% plot(1:n,Errorh,'b-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %
.
6 Comments
More Answers (1)
Torsten
on 16 Feb 2024
Edited: Torsten
on 16 Feb 2024
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
[x_newton,i_newton,Error_newton]=newtonmethod(f,df,x0,tol,n);
ddf=@(x) -4.5*sin(x);
[x_Hmethod,i_Hmethod,Error_Hmethod]=Hmethod(f,df,ddf,x0,tol,n);
%Plot results
hold on
plot(1:i_newton,Error_newton,'r-','Linewidth',02)
plot(1:i_Hmethod,Error_Hmethod,'b-','Linewidth',02)
hold off
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
function [xnew,i,Error] = newtonmethod(f,df,x0,tol,n)
%% Newton code
disp('No Itr Solution Error ')
Error=[];
for i=1:n
xnew=x0-(f(x0)/df(x0));
err=abs(xnew-x0);
Error=[Error;err];
fprintf('%3i %11.4f %11.4f\n',i,x0,err);
if (err<tol)
break
end
x0=xnew;
end
end
%% 2nd method
function [xnewh,i,Errorh] = Hmethod(f,df,ddf,x0,tol,n)
%% code
disp('No Itr Solution Errorh')
Errorh=[];
for i=1:n
xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
errh=abs(xnewh-x0);
Errorh=[Errorh;errh];
fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
if (errh<tol)
break
end
x0=xnewh;
end
end
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!