Negative D2 score on training data after lassoglm fit
14 views (last 30 days)
Show older comments
How can the deviance from a null model (i.e. betas all equal zero) be lower than the deviance from the full model? Surely lassoglm should choose betas all zero in this case?
From the code below, my d2Train is -0.0808.
[B, FitInfo] = lassoglm(table2array(indat.params.trainDataX), indat.params.trainDataY(:, minInd), 'poisson', 'Lambda', indat.combTable.bestLambdas(minInd), 'Alpha', indat.combTable.bestAlphas(minInd));
predCountsTrain = calculateRates(table2array(indat.params.trainDataX),B,FitInfo.Intercept)+eps;
predDevianceTrain = calculateDeviance(indat.params.trainDataY(:, minInd),predCountsTrain);
nullCountsTrain = calculateRates(table2array(indat.params.trainDataX),zeros(size(B)),FitInfo.Intercept)+eps;
nullDevianceTrain = calculateDeviance(indat.params.trainDataY(:, minInd),nullCountsTrain);
d2Train = 1 - (predDevianceTrain ./ nullDevianceTrain);
function rates = calculateRates(x,y,int)
rates = exp((x * y) + int);
end
function dev = calculateDeviance(observed,predicted)
scaledLogRatio = log(observed./predicted).*observed;
rawDifference = observed-predicted;
diffOfTerms = scaledLogRatio - rawDifference;
dev = nansum(diffOfTerms)*2;
end
0 Comments
Answers (0)
See Also
Categories
Find more on Descriptive Statistics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!