How to input pi

3,063 views (last 30 days)
Anthony
Anthony on 20 Sep 2016
Commented: Walter Roberson on 27 Jul 2024
How can i enter pi into an equation on matlab?
  2 Comments
Vignesh Shetty
Vignesh Shetty on 6 Apr 2020
Hi Anthony!
Its very easy to get the value of π. As π is a floating point number declare a long variable then assign 'pi' to that long variable you will get the value.
Eg:-
format long
p=pi
Walter Roberson
Walter Roberson on 16 Dec 2022
That is what @Geoff Hayes suggested years before. But it does not enter π into the calculation, only an approximation of π

Sign in to comment.

Accepted Answer

Geoff Hayes
Geoff Hayes on 20 Sep 2016
Edited: MathWorks Support Team on 28 Nov 2018
Anthony - use pi which returns the floating-point number nearest the value of π. So in your code, you could do something like
sin(pi)

More Answers (5)

Essam Aljahmi
Essam Aljahmi on 31 May 2018
Edited: Walter Roberson on 31 May 2018
28t2e0.3466tcos(0.6πt+π3)ua(t).
  5 Comments
Image Analyst
Image Analyst on 20 Oct 2018
Attached is code to compute Ramanujan's formula for pi, voted the ugliest formula of all time.
.
Actually I think it's amazing that something analytical that complicated and with a variety of operations (addition, division, multiplication, factorial, square root, exponentiation, and summation) could create something as "simple" as pi.
Unfortunately it seems to get to within MATLAB's precision after just one iteration - I'd have like to see how it converges as afunction of iteration (summation term). (Hint: help would be appreciated.)
John D'Errico
John D'Errico on 28 Nov 2018
Edited: John D'Errico on 28 Nov 2018
As I recall, these approximations tend to give a roughly fixed number of digits per term. I'll do it using HPF, but syms would also work.
DefaultNumberOfDigits 500
n = 10;
piterms = zeros(n+1,1,'hpf');
f = sqrt(hpf(2))*2/9801*hpf(factorial(0));
piterms(1) = f*1103;
hpf396 = hpf(396)^4;
for k = 1:n
hpfk = hpf(k);
f = f*(4*hpfk-3)*(4*hpfk-2)*(4*hpfk-1)*4/(hpfk^3)/hpf396;
piterms(k+1) = f*(1103 + 26390*hpfk);
end
piapprox = 1./cumsum(piterms);
pierror = double(hpf('pi') - piapprox))
pierror =
-7.6424e-08
-6.3954e-16
-5.6824e-24
-5.2389e-32
-4.9442e-40
-4.741e-48
-4.5989e-56
-4.5e-64
-4.4333e-72
-4.3915e-80
-4.3696e-88
So roughly 8 digits per term in this series. Resetting the default number of digits to used to 1000, then n=125, so a total of 126 terms in the series, we can pretty quickly get a 1000 digit approximation to pi:
pierror = hpf('pi') - piapprox(end + [-3:0])
pierror =
HPF array of size: 4 1
|1,1| -1.2060069282720814803655e-982
|2,1| -1.25042729756426e-990
|3,1| -1.296534e-998
|4,1| -8.e-1004
So as you see, it generates a very reliable 8 digits per term in the sum.
piapprox(end)
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
hpf('pi')
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
I also ran it for 100000 digits, so 12500 terms. It took a little more time, but was entirely possible to compute. I don't recall which similar approximation I used some time ago, but I once used it to compute 1 million or so digits of pi in HPF. HPF currently stores a half million digits as I recall.
As far as understanding how to derive that series, I would leave that to Ramanujan, and only hope he is listening on on this.

Sign in to comment.


Walter Roberson
Walter Roberson on 20 Oct 2018
If you are constructing an equation using the symbolic toolbox use sym('pi')
  3 Comments
James Emmanuelle Galvan
James Emmanuelle Galvan on 22 Oct 2021
sym(pi) prints out "pi".
Steven Lord
Steven Lord on 22 Oct 2021
That's correct. There are four different conversion techniques the sym function uses to determine how to convert a number into a symbolic expression. The default is the 'r' flag which as the documentation states "converts floating-point numbers obtained by evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q (for modest sized integers p and q) to the corresponding symbolic form."
The value returned by the pi function is "close enough" to p*pi/q (with p and q both equal to 1) for that conversion technique to recognize it as π. If you wanted the numeric value of the symbolic π to some number of decimal places use vpa.
p = sym(pi)
p = 
π
vpa(p, 30)
ans = 
3.14159265358979323846264338328

Sign in to comment.


Dmitry Volkov
Dmitry Volkov on 16 Dec 2022
Easy way:
format long
p = pi
  1 Comment
Walter Roberson
Walter Roberson on 16 Dec 2022
That is what @Geoff Hayes suggested years before. But it does not enter π into the calculation, only an approximation of π

Sign in to comment.


AKHIL TONY
AKHIL TONY on 1 Aug 2023
using pi will give an approximate value
  1 Comment
Walter Roberson
Walter Roberson on 1 Aug 2023
Yes, multiple people pointed that out years ago

Sign in to comment.


Meghpara
Meghpara on 27 Jul 2024
it is easy to ge pi
in p=PI.
  1 Comment
Walter Roberson
Walter Roberson on 27 Jul 2024
p=PI
Unrecognized function or variable 'PI'.
If you meant
p=pi

Sign in to comment.

Categories

Find more on Elementary Math in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!