浅いニューラルネット​ワークのミニバッチト​レーニング

1 view (last 30 days)
Hiroki Murakami
Hiroki Murakami on 18 Jun 2020
Commented: Naoya on 2 Jul 2020
現在,関数近似ニューラルネットワークを作成しようとしています.
そこでミニバッチで学習をしようとしていますが,trainではサポートされていないのでしょうか?
trainNetworkでしか実行できないのでしょうか?

Accepted Answer

Naoya
Naoya on 19 Jun 2020
残念ながら Deep Learning Toolboxの Shallow Nural Network (train関数ベース)においては、ミニバッチサイズを設定するオプションはありません。
よろしければ、trainNetwork関数ベースの学習の使用をご検討ください。
  2 Comments
Hiroki Murakami
Hiroki Murakami on 19 Jun 2020
ありがとうございます.
trainNetwork関数ベースを用いる場合,関数近似ニューラルネットワークを作成することは可能でしょうか?もし例などございましたらご教示お願い致します。
Naoya
Naoya on 2 Jul 2020
簡単な例で恐れ入りますが、trainNetworkベースでの回帰モデル例を示します。
入出力データ共に乱数としており、精度面は考慮していません。
あくまでもフローについてまでの例となります
% 回帰用 NN layers の作成
layers = [...
imageInputLayer([3,1,1]); % 入力 3ユニット
fullyConnectedLayer(10);
tanhLayer();
fullyConnectedLayer(3);
regressionLayer];
% 入力と教師データの作成
X = randn(3,1,1,1000); % 3入力 / 1000 パターン分
Y = rand(1000,3); % 3出力 / 1000パターン分
% 学習オプション
options = trainingOptions('sgdm', ...
'MiniBatchSize',100,...
'MaxEpochs',100,...
'InitialLearnRate',1e-4, ...
'Verbose',false, ...
'Plots','training-progress');
% 学習
net = trainNetwork(X,Y,layers,options);
% 予測 (新規3入力分を適用)
predict(net, rand(3,1))

Sign in to comment.

More Answers (0)

Categories

Find more on イメージを使用した深層学習 in Help Center and File Exchange

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!